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About me

2014: Took this class as a student

2017: Course assistant for this class

Feel free to blame me for “Part 3” of Project 1 :-)

2018: Joined Google Project Zero

Mission: Make 0-day hard

2020-now: Building mitigations, writing exploits, thinking about fundamentals



Conceptualizing vulnerabilities and exploits
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Running code: state machines emulating state machines

This is the intended state 
machine translated into code 
that can be run on a physical 
CPU (C++, Python, etc.)*

* Not quite true: that code still needs to be translated to machine code, which introduces another level of state machines emulating state machines



Running code: state machines emulating state machines

Bugs occur when there are 
reachable states in the 
runnable state machine 
(the code) that have no 
corresponding state in the 
intended state machine 
(the design)*

* Not the full picture: the initial design itself could have issues (design issues) which still count as software bugs
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Weird machines

http://www.dullien.net/thomas/weird-machines-exploitability.pdf



Common categories of software bugs

Design issue: The conceptual state machine does not meet the intended goals

The firewall’s remote interface is designed with a hardcoded admin password

Functionality bug: The code has bad transitions but only between validly 
represented states

The save button code is broken, no transition to “saving the file” state

Implementation bug: Code introduces new states not represented in the 
conceptual state machine

Lack of length checks introduces new “stack corruption” state



Other ways to reach unintended states

Hardware fault: The hardware suffers a glitch that causes a transition to an 
unintended state even if the code is perfect

A cosmic ray causes a bit flip in a voting machine’s memory, causing a state 
where one candidate has an impossible number of votes

Transmission error: The code is correct but is corrupted in-flight

A program downloaded from the internet suffers packet corruption, so the 
program that is run has a different state machine from the one that was sent

This list is not intended to be exhaustive; merely to illustrate the myriad ways that unintended states may enter a system; deciding which ones to defend against is one step of proper threat modeling



How to conceptualize this state space?

Assuming a computer with 16GB of memory, the number of nodes is (at least):

216 x 1024 x 1024 x 1024 = 217179869184  (a number with 5 billion digits)

This is very big



CPU instructions 
cause transitions 
between states



ASLR = 0x1000 ASLR = 0x2000 ASLR = 0x3000
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less relevant features of 
the full state space

But it’s still too large for 
humans to comprehend

ASLR = X



We can “quotient out” 
less relevant features of 
the full state space

But it’s still too large for 
humans to comprehend

ASLR = X

For any interesting 
program, it is essentially 
impossible to manually 
explore the full state 
space to find the 
unintended states
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Fuzzing

Find bugs in a program by feeding it random, corrupted, or unexpected data

Idea: Random inputs will explore a “large” part of the state space*

Some unintended states are observable as crashes (SIGSEGV, abort())

Any crash is a bug, but only some bugs are exploitable

Works best on programs that parse files or process complex input data

* Or at least, large compared to manual analysis, and a very different portion of the state space than what humans tend to reason about when reading code



Fuzzing example

Fuzzing can be as simple as:

cat /dev/random | head -c 512 > rand.jpeg; open rand.jpeg

How could we do better?

Randomly corrupt real JPEG files

Reference the JPEG spec so that we generate only “JPEG-looking” data

Look at the JPEG parser to see how deep we’re getting in the code



Common fuzzing strategies

Mutation-based fuzzing

Randomly mutate test cases from some corpus of input files

Generation-based (smart) fuzzing

Generate test cases based on a specification for the input format

Coverage guided fuzzing

Measure code coverage of test cases to guide fuzzing towards new 
(unexplored) program states

This is neither an exhaustive list nor a rigid taxonomy: fuzzers often employ multiple strategies



Mutation-based fuzzing

Randomly mutate test cases from some corpus of input files

1. Collect a corpus of inputs that explores as many states as possible

2. Perturb inputs randomly, possibly guided by heuristics

Modify: bit flips, integer increments

Substitute: small integers, large integers, negative integers

3. Run the program on the inputs and check for crashes

4. Go back to step 2



Can mutation-based “dumb” fuzzing ever be successful?

This is my go-to “I need a fuzzer running in 10 minutes” code in 2024:
void havoc(const uint8_t *buf, size_t size) {
  switch (rnd(0,4)) {
    case 0: buf[rnd(0,size)] ^= 1 << rnd(0,8);                       break;
    case 1: buf[rnd(0,size)] = rnd(0,0xff);                          break;
    case 2: *(uint32_t *)&buf[rnd(0,size-3)] += rnd_small(0,0xffff); break;
    case 3: *(uint32_t *)&buf[rnd(0,size-3)] -= rnd_small(0,0xffff); break;
  }
  if (rnd(0,4) != 0) havoc(buf, size);
}

It often finds a bug within 2 minutes

Dumb fuzzing is often way more successful than it has any right to be



Mutation-based fuzzing

Advantages

Very simple and fast to set up and run

Just need some example inputs and a harness to run the target code

No reason not to start here and parallelize with more involved VR

Limitations

Works best against never-been-fuzzed targets

Results depend strongly on the quality of the initial corpus

Coverage will be shallow for formats with checksums or validation



Generation-based (smart) fuzzing

Generate test cases based on a specification for the input format

1. Convert a specification of the input format (RFC, etc.) into a generative 
procedure

2. Generate test cases according to the procedure and introduce random 
perturbations

3. Run the program on the inputs and check for crashes

4. Go back to step 2



Syzkaller

A kernel system call fuzzer that uses 
test case generation and coverage

Test cases are sequences of syscalls 
generated from syscall descriptions

Runs the test case program in a VM

Kernel crashes in the VM indicate 
potential Local Privilege Escalation 
(LPE) vulnerabilities

https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions.md



Generation-based (smart) fuzzing

Advantages

Can get deeper coverage faster by leveraging knowledge of the input format

Input format/protocol complexity is not a limit on coverage depth

Limitations

Requires a lot of effort to set up

Successful fuzzers are often domain-specific

Coverage limited by accuracy of the spec; implementation may diverge



Coverage guided fuzzing

Key insight: code coverage is a useful metric, 
why not use it as feedback to guide fuzzing?

Prefer test cases that reach new states

Basic block coverage: Has this basic block 
in the CFG been run?

Edge coverage: Has this branch been taken?

Path coverage: Has this particular path 
through the program been taken?

https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html



american fuzzy lop (AFL)

1. Compile the program with 
instrumentation to measure 
coverage

2. Trim the test cases in the queue
to the smallest size that doesn’t change the program behavior

3. Create new test cases by mutating the files in the queue using traditional 
fuzzing strategies

4. If new coverage is found in a mutated file, add it into the queue

5. Go back to step 2

https://lcamtuf.coredump.cx/afl/README.txt



Coverage guided fuzzing

Advantages

Very good at finding new program states, even if the initial corpus is limited

Combines well with other fuzzing strategies

Wildly successful track record

Limitations

Not a panacea to bypass checksums or input validation

Still doesn’t find all types of bugs (e.g. race conditions)



Real world example: Fuzzing the Samsung Qmage codec

In 2019, Mateusz Jurczyk discovered the Qmage 
image codec included on Samsung smartphones

Reachable via zero-click MMS

The code looks fragile but the library is closed source

Very few examples of Qmage files  

Mateusz developed a harness to enable large-scale 
coverage-guided fuzzing of the Qmage codec

https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html



Fuzzing the Samsung Qmage image codec: harness

A fuzzing harness was written to
call the interesting functions in the
library and supply the test case
input from the fuzzer

Could find bugs fuzzing on-device, but Mateusz wanted to fuzz at-scale

An emulator (qemu-aarch64) was used to run the harness and Qmage library on a 
Linux machine

Easier to get 1000 Linux cores than 1000 Samsung Galaxy phones

d2s:/data/local/tmp $ ./loader accessibility_light_easy_off.qmg
[+] Detected image characteristics:
[+] Dimensions:      344 x 344
[+] Color type:      4
[+] Alpha type:      3
[+] Bytes per pixel: 4
[+] codec->GetAndroidPixels() completed successfully
d2s:/data/local/tmp $



Fuzzing the Samsung Qmage image codec: coverage

Code coverage was collected by 
modifying qemu-aarch64 to trace 
executed PC addresses

Coverage feedback compensated 
for the small number of initial test 
cases



Fuzzing the Samsung Qmage image codec: results

4 weeks of fuzzing at scale

87.3% coverage of the Qmage 
codec

5218 unique crashes



https://www.youtube.com/watch?v=nke8Z3G4jnc

https://www.youtube.com/watch?v=nke8Z3G4jnc


Another cool fuzzer: Fuzzilli

Very successful JavaScript fuzzer

Principle: Translate JavaScript to a 
dense Intermediate Language (IL), 
and fuzz the IL

https://github.com/googleprojectzero/fuzzilli



Fuzzing summary

Off-the-shelf fuzzers are excellent at 
finding bugs

Custom fuzzers are also excellent at 
finding bugs

Different fuzzers often find different 
bugs

Easy to get started

Fuzzing doesn’t find all types of bugs

Should I 
write a 
fuzzer?

Yes

This code parses untrusted data



Dynamic analysis



Dynamic analysis

Analyze a program’s behavior by actually running 
its code

Sometimes combined with compile-time 
modifications like instrumentation

Can modify the program’s behavior 
dynamically

Useful for rapid experimentation

Often complements fuzzing very well

https://web.stanford.edu/class/cs107/resources/valgrind.html



AddressSanitizer (ASan)

Fast memory error detector for C/C++ using compiler instrumentation and a 
runtime library that replaces malloc() to surround allocations with redzones

Out-of-bounds accesses
Use-after-free
Double-free / invalid free

Typically 2x slowdown

-fsanitize=address

Not hardened! Don’t turn on in production

==9901==ERROR: AddressSanitizer: heap-use-after-free on address 0x60700000dfb5 at pc 0x45917b
bp 0x7fff4490c700 sp 0x7fff4490c6f8
READ of size 1 at 0x60700000dfb5 thread T0
    #0 0x45917a in main use-after-free.c:5
    #1 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
    #2 0x459074 in _start (a.out+0x459074)
0x60700000dfb5 is located 5 bytes inside of 80-byte region [0x60700000dfb0,0x60700000e000)
freed by thread T0 here:
    #0 0x4441ee in __interceptor_free projects/compiler-rt/lib/asan/asan_malloc_linux.cc:64
    #1 0x45914a in main use-after-free.c:4
    #2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
previously allocated by thread T0 here:
    #0 0x44436e in __interceptor_malloc projects/compiler-rt/lib/asan/asan_malloc_linux.cc:74
    #1 0x45913f in main use-after-free.c:3
    #2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
SUMMARY: AddressSanitizer: heap-use-after-free use-after-free.c:5 main

https://github.com/google/sanitizers/wiki/AddressSanitizer
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Pro tip: Once coverage guided fuzzing 
plateaus, run the generated corpus under 
ASan to find bugs the fuzzer missed!



ThreadSanitizer (TSan)

Data race detector for C/C++

Similar in principle to AddressSanitizer but for race conditions

High overhead

5-10x memory

5-15x slowdown

-fsanitize=thread

Also not hardened!

WARNING: ThreadSanitizer: data race (pid=19219)
  Write of size 4 at 0x7fcf47b21bc0 by thread T1:
    #0 Thread1 tiny_race.c:4 (exe+0x00000000a360)

  Previous write of size 4 at 0x7fcf47b21bc0 by main thread:
    #0 main tiny_race.c:10 (exe+0x00000000a3b4)

  Thread T1 (running) created at:
    #0 pthread_create tsan_interceptors.cc:705 (exe+0x00000000c790)
    #1 main tiny_race.c:9 (exe+0x00000000a3a4)

https://clang.llvm.org/docs/ThreadSanitizer.html



Frida

Dynamic instrumentation for 
closed-source binaries

Execute custom scripts inside 
the analyzed process

Hook functions, trace execution, 
modify behavior

Great way to fuzz internal functions 
without writing a harness

https://frida.re/docs/hacking/
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Static analysis

Using a tool to analyze a program’s behavior without actually running it

Test whether a certain property holds or find places where it is violated

Static analysis can prove some properties about the program that fuzzing and 
dynamic analysis can’t

E.g., can prove that a program is free of NULL pointer dereferences

Despite lots of work in this area, there are countless interesting topics and huge 
scope for improvements!



Undecidability of static analysis

Goal: Determine whether a given program satisfies a given property

This is theoretically undecidable: it reduces to the halting problem!

def solve_halting_problem(P, a):
    def new_P():
        P(a)
        bug()
    return static_analyzer_for_bug(new_P)



Soundness and completeness

The best static analyzer can only satisfy one of the following:*

Soundness: Everything that the static analyzer finds is a bug

But some bugs may be missed!

Completeness: The static analyzer finds every bug

But there may be false positives!

Most static analyzers are neither sound nor complete

* We are assuming termination.



Data flow analysis

Determine the possible values of variables at 
points in the control flow graph

Approximations are usually needed

Expressing the precise set of possible 
values may be arbitrarily complex

X = 0

Y = A

X == Y

Z = Z+1 X = X+1

Z = 1X == Y

Z == 2 crash

... crash
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Taint analysis

Identify sources of “tainted” data

User/attacker input
Reads from files/network

Check to see if tainted data flows 
into a “trusted sink”

memcpy(_, _, size)
free(ptr)
bzero(_, size)

static int __vipx_ioctl_get_container(struct vs4l_container_list *karg,
    struct vs4l_container_list __user *uarg)
{
...
  ret = copy_from_user(karg, uarg, sizeof(*karg));
...
  ucon = karg->containers;
  size = karg->count * sizeof(*kcon);
  kcon = kzalloc(size, GFP_KERNEL);
...
  karg->containers = kcon;
  ret = copy_from_user(kcon, ucon, size);
  if (ret) {
    vipx_err("Copy failed [CONTAINER] (%d)\n", ret);
    goto p_err_free;
  }
  for (idx = 0; idx < karg->count; ++idx) {
    ubuf = kcon[idx].buffers;
    size = kcon[idx].count * sizeof(*kbuf);
    kbuf = kzalloc(size, GFP_KERNEL);
...
    kcon[idx].buffers = kbuf;
    ret = copy_from_user(kbuf, ubuf, size);
    if (ret) {
      vipx_err("Copy failed [CONTAINER] (%d)\n", ret);
      goto p_err_free;
    }
  }
...
  return 0;
p_err_free:
  for (idx = 0; idx < karg->count; ++idx)
    kfree(kcon[idx].buffers);
  kfree(kcon);
p_err:
  return ret;
}

https://bugs.chromium.org/p/project-zero/issues/detail?id=1978
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Clang static analyzer

Check for common security issues 
with a static analysis framework in 
the compiler

Built in checkers:

Buffer overflows (with taint)
Refcount errors
malloc() integer overflows
Insecure API use
Uninitialized value use

https://clang-analyzer.llvm.org/images/analyzer_html.png



CodeQL (Semmle)

Query language for finding patterns 
in large codebases

“SQL for searching code”

Works best when you have a 
specific bad code pattern in mind

https://msrc-blog.microsoft.com/2018/08/16/vulnerability-hunting-with-semmle-ql-part-1/



Manual analysis



https://bugs.chromium.org/p/project-zero/issues/detail?id=2085



Reverse engineering

Decompile a 
program to see 
how it works

Closed source 
programs often 
have shallower 
bugs

https://en.wikipedia.org/wiki/Ghidra#/media/File:Ghidra-disassembly,March_2019.png



Tips for writing (more) secure software



Software tests

One of the most effective ways to reduce bugs

Unit tests: Check that each piece of code behaves as expected in isolation

Goal: Unit tests should cover all code, including error handling

So many exploitable bugs would be eliminated with basic unit tests

Regression tests: Check that old bugs haven’t been reintroduced

If you don’t run regression tests, attackers will run them for you!

Integration tests: Check that modules work together as expected



General tips

1. Do not use a memory-unsafe language for new codebases

Starting Rust, Swift, etc. is a one-time cost; fixing C++ memory stompers is
a cost you’ll pay over and over again forever

2. Integrate security experts very early in the design process

Better to learn about fundamental flaws early to avoid re-doing everything

3. Design APIs so that the easiest way to use them is the safe way

Engineers using a new API tend to take the path of least resistance



Thank you!

bazad@cs.stanford.edu


