Building Secure Web Apps

CS155 Computer and Network Security

Stanford University

Cross-Site Request Forgery
(CSRF)

Cross-Site Request Forgery (CSRF)

e attacker.com POST /transfer Y
—_—————————— ~

S.post({url: “api.bank.com/account”, ..

. api.bank.com

Cross-site request forgery (CSRF) attacks are a type of web exploit where a
website transmits unauthorized commands as a user that the server trusts

In a CSRF attack, a user is tricked into submitting an unintended (often unrealized)
web request to a website — generally takes advantage of session cookies

You need to actively build defenses into web apps to protect against CSRF attacks

Options for Preventing CSRF Attacks

Do not trust cookies to indicate whether an authorized application
submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Three commonly used techniques to validate intent:
- Referer Header Validation

- Secret Validation Token
- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:
- sameSite Cookies

Options for Preventing CSRF Attacks

Do not trust cookies to indicate whether an authorized application
submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

k@8- [Wwo commonly used techniques to validate intent:

Form Submissions

- Secret Validation Token Javascript Requests
- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:
- sameSite Cookies

Options for Preventing CSRF Attacks

Do not trust cookies to indicate whether an authorized application

| 0l-10 AN — A AL 0l0]< - 0 -

What about GET Requests?

NEVER Change Application
State based on a GET request

Or, simply, don't send cookies to other domains:
- sameSite Cookies

sameSite Cookies

Cookies that match the domain of the current site, i.e. what's currently displayed in
the browser's address bar, are referred to as first-party cookies

Cookies from domains other than the current site are third-party cookies

Cookies marked as sameSite are only sent if first party

. Will not be sent for image,
form post if URL bar != origin of resource

Two Modes

sameSite cookie setting can be in two modes:

Strict Mode (SameSite=Strict): The cookie will only be sent if the site for the
cookie matches the site currently shown in the browser's URL bar.

Problem: If you're on Site A, click on a link to Site B, then Site B won't
receive cookie because when you clicked on the link, URL bar said Site A (or,
If you simply typed the site into the URL bar

Lax Mode (SameSite=Lax): Allows cookie to be sent with these top-level
navigations.

A Properly Secured Gookie

1. Don’t set domain, unless you need to (increases scope)

2. Add Necessary Security Restrictions

Only Allowed Over
HTTPS

Set-Cookie: key=value; Secure; HttpOnly;
SameSite=Lax;

Don’t Allow Javascript
Access through DOM
Prevent CSRF Attacks

Cross Site Scripting
(XSS)

Command Injection

Cross Site Scripting: Attack occurs when application takes untrusted data
and sends It to a web browser without proper validation or sanitization.

Command/SQL Injection Cross Site Scripting (XSS)

attacker’s malicious code is attacker’s malicious code is
executed on app’s server executed on victim’s browser

Both due to mixing untrusted user content and code to be executed

Content Security Policy (CSP)

You’re always safer using a whitelist- rather than blacklist-based approach

Content-Security-Policy Is an HI TP header that servers can send that
declares which dynamic resources (e.g., Javascript) are allowed to execute

Good News: CSP eliminates XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the
Implementation incorrect.

Example CSP — Javascript

Policies are defined as a set of directives for where different types of
resources can be fetched. For example:

Content-Security-Policy: script-src 'self'
— Javascript can only be loaded from the same domain as the page
— No Javascript from any other origins will be executed

— no Inline <script></script> will be executed

Clickjacking Attacks

Clickjacking

Attacker uses a transparent frame to trick a user into clicking on a button or
link on another page when they were intending to click on the top level page.

¢ >

= N
D

https://www.invicti.com/

Incorrect solution: framebusting

if (top != self) { top.location = self.location; }

®0o0o Mozilla Firefox |®O® Google

~

4)r = -i;g;) 'I\';;) \3) (E] http:/ /www.stanford.edu/~rydstedt/trybust/framed.r 1.0 v 1= (-‘ ;00gle) (<) »)= \g/ (;) ll\i;l' (-" http:/ /www.google.com/) (-"

Most Visited - Stanford -~ printing.stanford.edu Most Visited - Stanford -~ printing.stanford.edu

Web |Images Videos Maps News Shopping Gmail more v iGoogle | Search settings | Sign in

Google

Web Images Videos Maps News Shopping Gmail more v

iGoogle | Search settings | Sign in

,00gle

Advanced Search
Language Tools

Google Search || I'm Feeling Lucky
Google Search | I'm Feeling Lucky |

Advertising Programs - Business Solutions - About Google

Advertising Programs - Business Solutions - About Google 2010 - Privacy

Easy for parent to intercept and block call to change URL of page

Correct Solution: CSP

web browser example.com

HTTP response from server:

HTTP/1.1 200 OK

Content-Security-Policy: frame-ancestors 'none’;

frame-ancestors ‘self’ ;
means only example.com
can frame page

<iframe src=‘example.com’>
will cause an error

Sub-Resource Integrity

Third-Party Content Safety

Question: how do you safely load an object from a third party service?

<script src="https://code.jgquery.com/jquery-3.4.0.js"></script>

If code.jquery.com is compromised, your site is too!

MaxCDN Compromise

2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where
BootstrapCDN runs. The credentials of the support engineer were not
properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

Bootstrap 4

Sub-Resource Integrity (SRI)

SRI allows you to specify expected hash of file being included

<script
src="https://code.jqguery.com/jquery-3.4.0.min.js"
integrity="sha256-BJeo0gm959uMBGb652z40e]JJYGSgR]1 £NKwOg="
/>

Sub-Resource Integrity (SRI)

<script src="https://code.jquery.com/jquery-3.5.1.min.js”
integrity="sha256-9/aliU8dGd2tb60SsuzixeV4y/faTqgFtohetphbbjo="

crossorigin="anonymous">
</script>

Browser: (1) load sub-resource, (2) compute hash of contents,
(3) compare value to the integrity attribute.

* if hash mismatch: script or stylesheet are not executed
and an error is raised.

Enforce SRI with CSP

web browser example.com

HTTP response from server:

HTTP/1.1 200 OK

Content-Security-Policy: require-sri-for script style;

Requires SRI for all scripts and style sheets on page

Securely Using Cookies

Cookies have no integrity

Users can change and delete cookie values
* Edit cookie database (FF: cookies.sqlite)
* Modify Cookie header (FF: TamperData extension)

Shopping cart software

Set-cookie: shopping-cart-total = 150 ($)
User edits cookie file (cookie poisoning):
Cookie: shopping-cart-total = 15 (S)

Similar problem with localStorage and hidden fields:
<INPUT TYPE=“hidden” NAME=price VALUE=“150">

Sign Cookies if Data

Goal: data integrity

Requires server-side secret key k unknown to browser

Generate tag: T — MAGCsign(k, (SID, name, value))

Set-Cookie: NAME = value

Browser

Cookie: NAME = value

Verify tag: MACverify(k, (SID, name, value), T)

Binding to session-id (SID) makes it harder to replay old cookies

Protecting Cookies

Remember that you also need to limit the scope of when cookie
can be used:

Set-Cookie: id=a3fWa;
Expires=Wed, 21 Oct 2015 07:28:00 GMT;
sameSite=Strict;
Secure;

HttpOnly

Authentication and
Session Management

Pre-history: HTTP auth

HTTP request: GET /index.html

HTTP response contains:
WWW-Authenticate: Basic realm="Password Required”

Sign in

https://crypto.stanford.edu

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

HTTP auth problems

Hardly used in commercial sites:

 User cannot log out other than by closing browser

— What if user has multiple accounts?
multiple users on same machine?

* Site cannot customize password dialog

* Confusing dialog to users

* Easily spoofed Do not use ...

Session Management Today

GET / HTTP/1.1
cookies: [] Create

Anonymous

HTTP/1.0 200 OK [ECEEIEURIs
cookies: [session: e82a7b9Z]

<html><hl>Welcome!</hl></html>

Session Management Today

GET / HTTP/1.1
cookies: [] Create

Anonymous

HTTP/1.0 200 OK [ECEEIEURIs
cookies: [session: e82a7b9Z]

<html><hl>Welcome!</hl></html>

GET /loginform HTTP/1.1

cookies: [session: e82a7b9Z]
_—m
HTTP/1.0 200 OK

cookies: [session: e82a7b9Z]

——
<html><form>..</form></html>

Session Management Today

GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK
cookies: [session: e82a7b9Z]

GET /loginform HTTP/1.1 <html><hl>Welcome!</hl></html>

cookies: [session: e82a7b9Z]

—>
HTTP/1.0 200 OK

cookies: [session: e82a7b9Z]

-— - M

POST /login HTTP/1.1 <html><form>..</form></html>

cookies: [session: e82a7b9Z]

—_—nmm

username: zakir HTTP/1.0 200 OK
cookies: [session: e82a7b9Z]

password: stanford
<html><hl>Login Success</hl></html>

Create

Anonymous
Session ID

Check
Credentials

+ Upgrade
Token

Session Management Today

GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK
cookies: [session: e82a7b9Z]

GET /loginform HTTP/1.1 <html><hl>Welcome!</hl></html>

cookies: [session: e82a7b9Z]

—>
HTTP/1.0 200 OK

cookies: [session: e82a7b9Z]

-— - M

POST /login HTTP/1.1 <html><form>..</form></html>

cookies: [session: e82a7b9Z]

—_—nmm

username: zakir HTTP/1.0 200 OK
cookies: [session: e82a7b9Z]

password: stanford
<html><hl>Login Success</hl></html>

GET /account HTTP/1.1
—>

cookies: [session: e82a7b9Z]

Create

Anonymous
Session ID

Check
Credentials

+ Upgrade
Token

Session Tokens

Example 1: counter

Session / = user logs in, gets counter value,
Token can view sessions of other users

Pitfalls
Example 2: weak MAC. token = { userid, MAC,(userid) }
e Weak MAC exposes k from few cookies.

Gession tokens must be unpredictable to attacker \

To generate: use underlying framework (e.g. ASP, Tomcat, Rails)

Rails: token = SHA256(current time, random nonce)

" v

Implementing Logout

Web sites must provide a logout function:
* Functionality: let user to login as different user
* Security: prevent others from abusing account

What happens during logout:
1. Delete SessionToken from client
2. Mark session token as expired on server

Problem: many web sites do (1) but not (2) !!
= Especially risky in case of XSS vulnerability

How do you delete a cookie?

Cookies can have expiration dates
Set-Cookie: sessionID=XYZ; Expires=<Date>
To delete a cookie, set expiration to the past:

Set-Cookie: sessionlID=:
Expires=Thu, 01 Jan 1970 00:00:00 GMT

Authenticating Users

Plain Text Passwords (Terrible)
- Store the password and check match against user input
- Don’t trust anything that can provide you your password

Plain Text Passwords (Terrible)

- Store the password and check match against
user input

- Don’t trust anything that can provide you
your password

Store Password Hash (Bad)

- Store SHA-1(pw) and check match against
SHA-1(input)

- Weak against attacker who has hashed
common passwords

Authenticating Users

Input

Fox

cryptographic
hash
function

Digest

DFCD 3454 BBEA 788A 751
696C 24D9 7009 CA99

2D1$

The red fox
jumps over
the blue dog

cryptographic
hash
function

0086
ACC7

46BB FB7D CBEZ2
6CD1 90B1 EE6E

823C
3ABC

The red fox
jumps ouer
the blue dog

cryptographic
hash
function

8FD8
76B1

7558 7851 4F32
7929 0DA4 AEFE

D1C
481

The red fox
jumps oevr
the blue dog

cryptographic
hash
function

FCD3

7FDB 5AF2 C6FF

D401 COA9 7D9A 46AF

915
FB4

The red fox
jumps oer
the blue dog

cryptographic
hash
function

8ACA D682 D588 4C75

1799

7D88 BCF8 92B9

4BF
6A6

Authenticating Users

Plain Text Passwords (Terrible)
- Store the password and check match against user input
- Don’t trust anything that can provide you your password

Store Password Hash (Bad)
- Store SHA-1(pw) and check match against SHA-1(input)
- Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
- Store (r, Hash(pw| |r)) and check against Hash (input| |r)
- Prevents attackers from pre-computing password hashes

Authenticating Users

Store Salted Hash (Best)
- Store (r, H(pw || r)) and check match against H(input || r)
- Prevents attackers from pre-computing password hashes

Making sure to choose an H that’s expensive to compute:
SHA-512: 3,235 MH/s
SHA-3 (Keccak): 2,500 MH/s
BCrypt: 43,551 H/s

Use bcerypt and salt passwords if you're storing passwords!

Password Requirement Downfalls

Complexity (e.g., as measured by entropy) isn't necessarily strong — users
add complexity in predictable ways

Requiring users to regularly change passwords leads to weak passwords

Length is the most important factor for a secure password

Modern Password Recommendations

* Minimum password length should be at least 8 characters
 Maximum password length should be at least 64 characters
* Do not allow unlimited length, to prevent denial-of-service
 Common gotcha: bcrypt has a max length of 72 ASCII characters
* Check passwords against known breach datasets
 Rate-limit authentication attempts

* Encourage/require use of a second factor

Designing Login Workflows

 Helpful error messages can leak information to attackers
* “Invalid User ID”
* “Invalid password for User X”
* “Login failed; account disabled”
 Correct response:
* “Login failed; invalid User ID or Password”

* Not only login — think about User Registration and Password Reset

Designing Login Workflows

 Helpful error messages can leak information to attackers

* “Invalid User ID”

* “|nvalid password for User X” In general, error messages should not leak any
| | _ iInformation about the state of a system
* “Login failed; account disabled” (in the web or beyond)

 Correct response:
* “Login failed; invalid User ID or Password”

* Not only login — think about User Registration and Password Reset

Preventing Guessing

* |t’s your responsibility to also prevent attackers from guessing
passwords of your users:

e |Limit the rate at which an attacker can make authentication
attempts, or delay incorrect attempts

e Track of IP addresses and limit the number of unsuccessful
attempts

 Temporarily lock user account after too many unsuccessful
attempts

Phishing

What do Passwords Protect Against?

* A strong password can protect against:
 Password spray: Testing a weak password against large number of accounts

* Brute force: Testing multiple passwords from dictionary or other source
against a single account

 But do not protect against:
* Credential stuffing: Replaying passwords from a breach
* Phishing: Man-in-the-middle, credential interception
 Keystroke logging: Malware, sniffing

e Extortion: Blackmall, insider threat

Phishing

* Acting like a reputable entity to trick the user into divulging sensitive
iInformation such as login credentials or account information

* Often easier than attacking the security of a system directly

e Just get the user to tell you their password

Hey there! X =+

€ O A hitps//www.apple.com

& www.apple.com

Secure Connection

Internationalized Domain Names (IDN)

e Domain names consist of ASCII characters

* Hostnames containing Unicode characters are transcoded to subset of
ASCII consisting of letters, digits, and hyphens called punycode

* Allows registering domains with foreign characters!

* munchen.example.com — xn--mnchen-3ya.example.com

IDN homograph attack

 Many Unicode characters are difficult to distinguish from common ASCI|
characters

 apple.com vs. apple.com

e .

Xn--pple-43d.com apple.com

Did you mean apple.com?

The site you just tried to visit looks fake. Attackers sometimes mimic sites by making
small, hard-to-see changes to the URL.

CIgnore) Go to apple.com

Google Safe Browsing

* Google maintains a list of
known malware and phishing
URLs — tries to protect user

 But, how do you let users look
up dangerous sites without
leaking all traffic to Google?

Dangerous site

Attackers on the site you're trying to visit might trick you into installing software or
revealing things like your password, phone, or credit card number. Chrome strongly
recommends going back to safety. Learn more

»/ Turn on enhanced protection to get Chrome's highest level of security

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

Safe

Web :
Browsing

Server

Browser

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

Safe

Web Is “evil.example.com/blah"

Browsin
safe? 9

Server

Browser

http://evil.example.com/blah

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

Safe

Web Is “evil.example.com/blah"

Browsin
safe? 9

Server

Browser

Calculate: combinations = |
H(“evil.example.com"),
H(“example.com"),
H(“evil.example.com/blah"),
H(“example.com/blah")

] =['1a02...28', 'bb90...9f',

'7a9e...67', ‘bac8...fa']

http://evil.example.com/blah
http://evil.example.com
http://example.com
http://evil.example.com/blah
http://example.com/blah

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

Safe

Web

Is “evil.example.com/blah"
safe?

Browsing
Server

Browser

Are any of [‘1a02...°, 'bb90...",
'7a9e...', ‘bac8...’] present?

http://evil.example.com/blah

Safe Browsing Approach

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']

Safe

Web

Is “evil.example.com/blah"
safe?

Browsing
Server

Browser

Are any of [‘1a02...°, 'bb90...",
'7a9e...', ‘bac8...’] present?

No

Q Safe!

http://evil.example.com/blah

Safe Browsing Approach

Is “evil.example.com/blah"

safe?

Are any of [‘1a02...°, 'bb90...',

'7a%e...", ‘bac8...’] present? < O
—————————————————————————>
Yes (‘1a02’)
Safe
Web A Unknown Browsing

Browser
Server

http://evil.example.com/blah

Safe Browsing Approach

Is “evil.example.com/blah"

safe?

Are any of [‘1a02...°, 'bb90...',

'7a%e...", ‘bac8...’] present? <
—————————————————————————>
Yes (‘1a02’)
Safe
Web A Unknown Browsing

Browser
Server

What are the unsafe hashes with the prefix?

http://evil.example.com/blah

Safe Browsing Approach

Is “evil.example.com/blah"

safe?

Are any of [‘1a02...°, 'bb90...',

'7a%e...", ‘bac8...’] present? <
—————————————————————————>
Yes (‘1a02’)
Safe
Web A Unknown Browsing

Browser
Server

What are the unsafe hashes with the prefix ‘1a02’ ?

[[1a02....af’, ‘1a02....23’, ...]

Check for Exact Match

http://evil.example.com/blah

Beyond Passwords

What do Passwords Protect Against?

* A strong password can protect against:
 Password spray: Testing a weak password against large number of accounts

* Brute force: Testing multiple passwords from dictionary or other source
against a single account

 But do not protect against:
* Credential stuffing: Replaying passwords from a breach
* Phishing: Man-in-the-middle, credential interception
 Keystroke logging: Malware, sniffing

e Extortion: Blackmall, insider threat

Home Notify me Domain search Who's been pwned Passwords APl About Donate B P

;--have | been pwned?

Check if your email address is in a data breach

771 13,080,233,673 115,769 228,884,627
pwned websites pwned accounts pastes paste accounts
Largest breaches Recently added breaches
= Collection #1 accounts wone. MovieBoxPro accounts

Verifications.io accounts Piping Rock accounts

Multi-Factor Authentication

* Microsoft: “Based on our studies, your account is
more than 99.9% less likely to be compromised
If you use MFA”

* How are accounts compromised in practice?

* Credential Stuffing — attackers try to log in
using purchased lists of usernames and

passwords coummeosaratinod

Can’t access your account?

* Phishing — users are deceived Into entering
their password

Sign-in options

SMS-Based Two Factor

* Prevents attackers from logging in using

stolen credential by sending One Time
Code (OTC) to user

* Now considered obsolete. Falls against:
* Phishing sites
* SIM Swapping

* Social Engineering Attacks

B s

Your one time
verification code is:
635606. Please type

this code in your app
to complete the
verification.

Time-based One-Time Passwords (TOTP)

\ 829 170
= ': :':'.--." : / e Passcode

Authentlcator App

+ e 3 829170
Passcode

Application Infrastructure Source: Twilio

User's phone

Shared OTP Secret Key,
issuer, period

1] 3
l‘ .i. _'. '
p
| |

Duo Push Notifications

* Duo (or similar) Push Notifications prevent
doesn’t show a code — can’t be stolen
by an attacker

 Doesn’t provide full-proof defense against
“push phishing”:

* User clicking Approve out of habit
* Real-Time Phishing Site attacks

-

Are you logging in to Acme Corp?

@ Ann Arbor, MI, US
® 8:31AM

A narroway

Deny Approve

How to provide foolproof 2FA?

* Most secure solutions rely on
cryptographic operation
that’s tied to the website
being visited by the user

* We have fool-proof solutions
today: physical security
tokens and Passkeys

Physical Tokens

 Each token has a public and
private key pair

* Private key cannot be
extracted from the device

* Pushing button signs a
challenge presented to the
device

Relying
U2F Device Client Party
challenge
-
challenge
-« Lookup
pub
Sign
with k_ .
priv
signature(challenge)
- / >
Y~
= S
>
Check s
using K

pub

U2F Protocol 5

Relying
U2F Device Client Party

Challenge is Bound to challenge
Website by Browser <

challenge,

- L ookup
— _/
Y kpub
Sign C

with k

priv

signature(c)

- _/
Y

S C, S

> Check s

using kpub

FIDO2/WebAuthN

 U2F Protocol only allowed
hardware tokens to be
used as a second factor

e FIDO2 allows them to be

used as primary
authentication mechanism

e Allows authenticators

o)

' :User Agent :Relying Party

Goes to relying
party's website

HTTP GET

RO i
Clicks login button E

Get challenge

Chall
<.......Ch allenge ..

:Authenticator

Relying party's scriptl

running on the user agent
calls
navigator.credentials.get
with this data.

Challenge + get credentials command +

Authorization request (option'al)

requested credentials id (optional)

Authorized

__

~ Signed challenge

____________________ >

<

Signed challenge ’-'-

L di
.......Loggedin

Logged in

Pass Keys

e Jechnical Name: “Multi-
Device FIDO Credentials”

* Public/Private key pair that
IS synchronized across
devices (e.g., by Google or
Apple) and can be used
through WebAuthN AP|

Multi-device

FIDO credential
FIDO w

Credential G Ar

FIDO
Credential Synced key

Device-bound key
(optional extension)

Single-device
FIDO credential

FIDO Non-synced key

Credential
FIDO
Credential

Figure 1: Multi-device vs. single-device credentials

Building a Secure Web
Application

Many Steps Involved

Best Advice: Use a modern web framework — many security
precautions are bullt in today — but don't assume!

Protect Against CSRF: Never depend on cookies to signal user
intent! Use CORS Pre-Flight or CSRF Tokens.
Set cookies as sameSite and secure.

Protect Against XSS: Set a Content Security Policy and do
not use any inline scripts. Use httpOnly cookies.

Protect Against SQL Injection: Use Parameterized SQL or
Object Relational Mapper (ORM)

Many More Steps Involved

Protect Against Data Breach: Use modern hashing algorithm like
BCRYPT and salt passwords

Protect Against Clickjacking: Set Content Security Policy that
prevents you from being shown in an IFRAME

Protect Against Malicious Third Parties: Use lframes, CSP, and
HTML5 Sandboxes

Protect Against Compromised Third Parties: Use Sub-Resource
Integrity Headers

Protect Against Credential Compromise and Phishing: Use U2F

