
Building Secure Web Apps
CS155 Computer and Network Security

Cross-Site Request Forgery
(CSRF)

Cross-Site Request Forgery (CSRF)
POST /transfer

api.bank.com

attacker.com

$.post({url: “api.bank.com/account“, …})

Cross-site request forgery (CSRF) attacks are a type of web exploit where a
website transmits unauthorized commands as a user that the server trusts

In a CSRF attack, a user is tricked into submitting an unintended (often unrealized)
web request to a website — generally takes advantage of session cookies

You need to actively build defenses into web apps to protect against CSRF attacks

Options for Preventing CSRF Attacks
Do not trust cookies to indicate whether an authorized application
submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Three commonly used techniques to validate intent:

- Referer Header Validation

- Secret Validation Token

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:

- sameSite Cookies

Options for Preventing CSRF Attacks
Do not trust cookies to indicate whether an authorized application
submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Three Two commonly used techniques to validate intent:

- Referer Header Validation

- Secret Validation Token

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:

- sameSite Cookies

Javascript Requests

Form Submissions

Options for Preventing CSRF Attacks
Do not trust cookies to indicate whether an authorized application
submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Three Two commonly used techniques to validate intent:

- Referer Header Validation

- Secret Validation Token

- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies to other domains:

- sameSite Cookies

Form Submissions

What about GET Requests?

NEVER Change Application
State based on a GET request

sameSite Cookies
Cookies that match the domain of the current site, i.e. what's currently displayed in
the browser's address bar, are referred to as first-party cookies

Cookies from domains other than the current site are third-party cookies

Cookies marked as sameSite are only sent if first party

Will not be sent for image,  
form post if URL bar != origin of resource

Two Modes
sameSite cookie setting can be in two modes:

Strict Mode (SameSite=Strict): The cookie will only be sent if the site for the
cookie matches the site currently shown in the browser's URL bar.

Problem: If you're on Site A, click on a link to Site B, then Site B won't
receive cookie because when you clicked on the link, URL bar said Site A (or,
if you simply typed the site into the URL bar

Lax Mode (SameSite=Lax): Allows cookie to be sent with these top-level
navigations.

A Properly Secured Cookie
1. Don’t set domain, unless you need to (increases scope)

2. Add Necessary Security Restrictions 
 

 Set-Cookie: key=value; Secure; HttpOnly;  
 SameSite=Lax;

Only Allowed Over
HTTPS

Don’t Allow Javascript
Access through DOM

Prevent CSRF Attacks

Cross Site Scripting
(XSS)

Command Injection
Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection
attacker’s malicious code is

executed on app’s server

Cross Site Scripting (XSS)
attacker’s malicious code is

executed on victim’s browser

Both due to mixing untrusted user content and code to be executed

Content Security Policy (CSP)
You’re always safer using a whitelist- rather than blacklist-based approach

Content-Security-Policy is an HTTP header that servers can send that
declares which dynamic resources (e.g., Javascript) are allowed to execute

Good News: CSP eliminates XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the
implementation incorrect.

Example CSP — Javascript
Policies are defined as a set of directives for where different types of
resources can be fetched. For example: 

Content-Security-Policy: script-src 'self'

 → Javascript can only be loaded from the same domain as the page

 → No Javascript from any other origins will be executed

 → no inline <script></script> will be executed 

Clickjacking Attacks

Clickjacking
Attacker uses a transparent frame to trick a user into clicking on a button or
link on another page when they were intending to click on the top level page.

https://www.invicti.com/

Incorrect solution: framebusting
if (top != self) { top.location = self.location; }

Easy for parent to intercept and block call to change URL of page

Correct Solution: CSP

Sub-Resource Integrity

Third-Party Content Safety

Question: how do you safely load an object from a third party service?

<script src="https://code.jquery.com/jquery-3.4.0.js"></script>

If code.jquery.com is compromised, your site is too!

MaxCDN Compromise
2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where
BootstrapCDN runs. The credentials of the support engineer were not
properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

Sub-Resource Integrity (SRI)

SRI allows you to specify expected hash of file being included

<script
 src="https://code.jquery.com/jquery-3.4.0.min.js"
 integrity="sha256-BJeo0qm959uMBGb65z40ejJYGSgR1fNKwOg="
/>

Sub-Resource Integrity (SRI)

Enforce SRI with CSP

Securely Using Cookies

Cookies have no integrity
Users can change and delete cookie values
 * Edit cookie database (FF: cookies.sqlite)

 * Modify Cookie header (FF: TamperData extension)

Shopping cart software
 Set-cookie: shopping-cart-total = 150 ($)
User edits cookie file (cookie poisoning):
 Cookie: shopping-cart-total = 15 ($)
 
Similar problem with localStorage and hidden fields:

 <INPUT TYPE=“hidden” NAME=price VALUE=“150”>

Sign Cookies if Data

Protecting Cookies

Remember that you also need to limit the scope of when cookie
can be used:

Set-Cookie: id=a3fWa;  
 Expires=Wed, 21 Oct 2015 07:28:00 GMT;

 sameSite=Strict;

 Secure;

 HttpOnly

Authentication and
Session Management

Session Management Today
GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

Create
Anonymous
Session ID

GET /loginform HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]
<html><form>…</form></html>

Session Management Today
GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

Create
Anonymous
Session ID

GET /loginform HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]
<html><form>…</form></html>POST /login HTTP/1.1

cookies: [session: e82a7b92]
username: zakir
password: stanford

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

Session Management Today
GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

Create
Anonymous
Session ID

Check
Credentials
 + Upgrade

Token

GET /loginform HTTP/1.1
cookies: [session: e82a7b92]

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]
<html><form>…</form></html>POST /login HTTP/1.1

cookies: [session: e82a7b92]
username: zakir
password: stanford

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

GET /account HTTP/1.1
cookies: [session: e82a7b92]

Session Management Today
GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Welcome!</h1></html>

Create
Anonymous
Session ID

Check
Credentials
 + Upgrade

Token

Session Tokens
Session  

Token 
Pitfalls

Implementing Logout

How do you delete a cookie?
Cookies can have expiration dates

 Set-Cookie: sessionID=XYZ; Expires=<Date>

To delete a cookie, set expiration to the past:

 Set-Cookie: sessionID=;  
 Expires=Thu, 01 Jan 1970 00:00:00 GMT

Authenticating Users
Plain Text Passwords (Terrible)
 - Store the password and check match against user input

 - Don’t trust anything that can provide you your password

Store Password Hash (Bad)
 - Store SHA-1(pw) and check match against SHA-1(input)

 - Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
 - Store (r, SHA-1(pw || r)) and check match against SHA-1(input || r)

 - Prevents attackers from pre-computing password hashes

Authenticating Users
Plain Text Passwords (Terrible)
 - Store the password and check match against

user input

 - Don’t trust anything that can provide you

your password

Store Password Hash (Bad)
 - Store SHA-1(pw) and check match against

SHA-1(input)

 - Weak against attacker who has hashed

common passwords

Authenticating Users
Plain Text Passwords (Terrible)
 - Store the password and check match against user input

 - Don’t trust anything that can provide you your password

Store Password Hash (Bad)
 - Store SHA-1(pw) and check match against SHA-1(input)

 - Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
 - Store (r, Hash(pw||r)) and check against Hash(input||r)

 - Prevents attackers from pre-computing password hashes

Authenticating Users
Store Salted Hash (Best)
 - Store (r, H(pw || r)) and check match against H(input || r)

 - Prevents attackers from pre-computing password hashes

Making sure to choose an H that’s expensive to compute:

SHA-512: 3,235 MH/s

SHA-3 (Keccak): 2,500 MH/s

BCrypt: 43,551 H/s

Use bcrypt and salt passwords if you’re storing passwords!

Password Requirement Downfalls
Complexity (e.g., as measured by entropy) isn't necessarily strong — users
add complexity in predictable ways

Requiring users to regularly change passwords leads to weak passwords

Length is the most important factor for a secure password

Modern Password Recommendations
• Minimum password length should be at least 8 characters

• Maximum password length should be at least 64 characters

• Do not allow unlimited length, to prevent denial-of-service

• Common gotcha: bcrypt has a max length of 72 ASCII characters

• Check passwords against known breach datasets

• Rate-limit authentication attempts

• Encourage/require use of a second factor

Designing Login Workflows
• Helpful error messages can leak information to attackers

• “Invalid User ID”

• “Invalid password for User X”

• “Login failed; account disabled”

• Correct response:

• “Login failed; invalid User ID or Password”

• Not only login — think about User Registration and Password Reset

Designing Login Workflows
• Helpful error messages can leak information to attackers

• “Invalid User ID”

• “Invalid password for User X”

• “Login failed; account disabled”

• Correct response:

• “Login failed; invalid User ID or Password”

• Not only login — think about User Registration and Password Reset

In general, error messages should not leak any
information about the state of a system

(in the web or beyond)

Preventing Guessing
• It’s your responsibility to also prevent attackers from guessing

passwords of your users:

• Limit the rate at which an attacker can make authentication
attempts, or delay incorrect attempts

• Track of IP addresses and limit the number of unsuccessful
attempts

• Temporarily lock user account after too many unsuccessful
attempts

Phishing

What do Passwords Protect Against?
• A strong password can protect against:

• Password spray: Testing a weak password against large number of accounts

• Brute force: Testing multiple passwords from dictionary or other source
against a single account

• But do not protect against:

• Credential stuffing: Replaying passwords from a breach

• Phishing: Man-in-the-middle, credential interception

• Keystroke logging: Malware, sniffing

• Extortion: Blackmail, insider threat

Phishing
• Acting like a reputable entity to trick the user into divulging sensitive

information such as login credentials or account information

• Often easier than attacking the security of a system directly

• Just get the user to tell you their password

Internationalized Domain Names (IDN)
• Domain names consist of ASCII characters

• Hostnames containing Unicode characters are transcoded to subset of
ASCII consisting of letters, digits, and hyphens called punycode

• Allows registering domains with foreign characters!

• münchen.example.com → xn--mnchen-3ya.example.com

IDN homograph attack

• Many Unicode characters are difficult to distinguish from common ASCII
characters

• аpple.com vs. apple.com

apple.com xn--pple-43d.com

Google Safe Browsing

• Google maintains a list of
known malware and phishing
URLs — tries to protect user

• But, how do you let users look
up dangerous sites without
leaking all traffic to Google?

Safe Browsing Approach

Web
Browser

Safe
Browsing

Server

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']
DB

Safe Browsing Approach

Web
Browser

Safe
Browsing

Server

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']
DB

Is “evil.example.com/blah"
 safe?

http://evil.example.com/blah

Safe Browsing Approach

Web
Browser

Safe
Browsing

Server

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']
DB

Is “evil.example.com/blah"
 safe?

Calculate: combinations = [ 
 H(“evil.example.com"), 
 H(“example.com"), 
 H(“evil.example.com/blah"), 
 H(“example.com/blah")
] = ['1a02…28', 'bb90…9f',  
'7a9e…67', ‘bac8…fa'] 

http://evil.example.com/blah
http://evil.example.com
http://example.com
http://evil.example.com/blah
http://example.com/blah

Safe Browsing Approach

Web
Browser

Safe
Browsing

Server

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']
DB

Is “evil.example.com/blah"
 safe?

Are any of [‘1a02…’, 'bb90…',  
'7a9e…', ‘bac8…’] present?

DB

http://evil.example.com/blah

Safe Browsing Approach

Web
Browser

Safe
Browsing

Server

Get Unsafe Hash Prefixes

['036b8320', '1a020a78', 'bac8de13', ‘bb90a0f1']
DB

Is “evil.example.com/blah"
 safe?

Are any of [‘1a02…’, 'bb90…',  
'7a9e…', ‘bac8…’] present?

DBNo

Safe!

http://evil.example.com/blah

Safe Browsing Approach

Web
Browser

Safe
Browsing

Server

Is “evil.example.com/blah"
 safe?

Are any of [‘1a02…’, 'bb90…',  
'7a9e…', ‘bac8…’] present?

DBYes (‘1a02’)

Unknown

http://evil.example.com/blah

Safe Browsing Approach

Web
Browser

Safe
Browsing

Server

Is “evil.example.com/blah"
 safe?

Are any of [‘1a02…’, 'bb90…',  
'7a9e…', ‘bac8…’] present?

DBYes (‘1a02’)

Unknown

What are the unsafe hashes with the prefix?

http://evil.example.com/blah

Safe Browsing Approach

Web
Browser

Safe
Browsing

Server

Is “evil.example.com/blah"
 safe?

Are any of [‘1a02…’, 'bb90…',  
'7a9e…', ‘bac8…’] present?

DBYes (‘1a02’)

Unknown

What are the unsafe hashes with the prefix ‘1a02’ ?

[‘1a02….af’, ‘1a02….23’, …]

Check for Exact Match

http://evil.example.com/blah

Beyond Passwords

What do Passwords Protect Against?
• A strong password can protect against:

• Password spray: Testing a weak password against large number of accounts

• Brute force: Testing multiple passwords from dictionary or other source
against a single account

• But do not protect against:

• Credential stuffing: Replaying passwords from a breach

• Phishing: Man-in-the-middle, credential interception

• Keystroke logging: Malware, sniffing

• Extortion: Blackmail, insider threat

Multi-Factor Authentication
• Microsoft: “Based on our studies, your account is

more than 99.9% less likely to be compromised
if you use MFA”

• How are accounts compromised in practice?

• Credential Stuffing — attackers try to log in
using purchased lists of usernames and
passwords

• Phishing — users are deceived into entering
their password

SMS-Based Two Factor
• Prevents attackers from logging in using

stolen credential by sending One Time
Code (OTC) to user

• Now considered obsolete. Fails against:

• Phishing sites

• SIM Swapping

• Social Engineering Attacks

Time-based One-Time Passwords (TOTP)

Source: Twilio

SIM Swapping

Duo Push Notifications

• Duo (or similar) Push Notifications prevent
doesn’t show a code — can’t be stolen
by an attacker

• Doesn’t provide full-proof defense against
“push phishing”:

• User clicking Approve out of habit

• Real-Time Phishing Site attacks

How to provide foolproof 2FA?

• Most secure solutions rely on
cryptographic operation
that’s tied to the website
being visited by the user

• We have fool-proof solutions
today: physical security
tokens and Passkeys

Physical Tokens

• Each token has a public and
private key pair

• Private key cannot be
extracted from the device

• Pushing button signs a
challenge presented to the
device

U2F Protocol

U2F Protocol
Challenge is Bound to  
Website by Browser

FIDO2/WebAuthN
• U2F Protocol only allowed

hardware tokens to be
used as a second factor

• FIDO2 allows them to be
used as primary
authentication mechanism

• Allows authenticators
beyond hardware  
token (e.g., TouchID)

Pass Keys

• Technical Name: “Multi-
Device FIDO Credentials”

• Public/Private key pair that
is synchronized across
devices (e.g., by Google or
Apple) and can be used
through WebAuthN API

Building a Secure Web
Application

Many Steps Involved
Best Advice: Use a modern web framework — many security
precautions are built in today — but don't assume!

Protect Against CSRF: Never depend on cookies to signal user
intent! Use CORS Pre-Flight or CSRF Tokens.  
Set cookies as sameSite and secure.

Protect Against XSS: Set a Content Security Policy and do
not use any inline scripts. Use httpOnly cookies.

Protect Against SQL Injection: Use Parameterized SQL or
Object Relational Mapper (ORM)

Many More Steps Involved
Protect Against Data Breach: Use modern hashing algorithm like
BCRYPT and salt passwords

Protect Against Clickjacking: Set Content Security Policy that
prevents you from being shown in an IFRAME

Protect Against Malicious Third Parties: Use Iframes, CSP, and
HTML5 Sandboxes

Protect Against Compromised Third Parties: Use Sub-Resource
Integrity Headers

Protect Against Credential Compromise and Phishing: Use U2F

