

Web security

HTTPS and the Lock Icon

Goals for this lecture

Brief overview of HTTPS:

- How the SSL/TLS protocol works (very briefly)
- How to use HTTPS

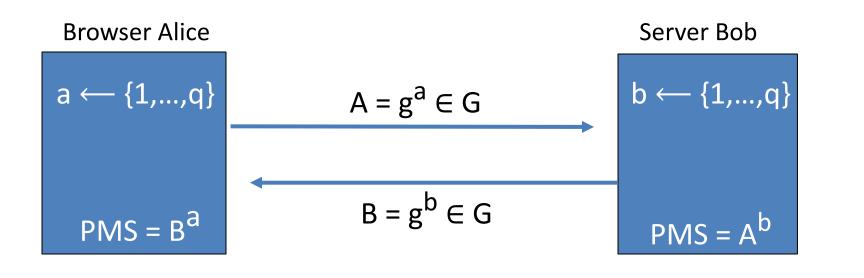
Integrating HTTPS into the browser

Lots of user interface problems to watch for

Threat Model: Network Attacker

Network Attacker:

- Controls network infrastructure: Routers, DNS
- Eavesdrops, injects, blocks, and modifies packets


Examples:

- Wireless network at Internet Café
- Internet access at hotels (untrusted ISP)

TLS overview: (1) DH key exchange

Anonymous key exchange secure against eavesdropping:

The Diffie-Hellman protocol in a group $G = \{1, g, g^2, g^3, ..., g^{q-1}\}$

PreMasterSecret = g^{ab} = $(g^b)^a = B^a$ = $(g^a)^b = A^b$

(2) Digital signatures

Goal: bind document to author

Problem: attacker can copy Alice's sig from one doc to another

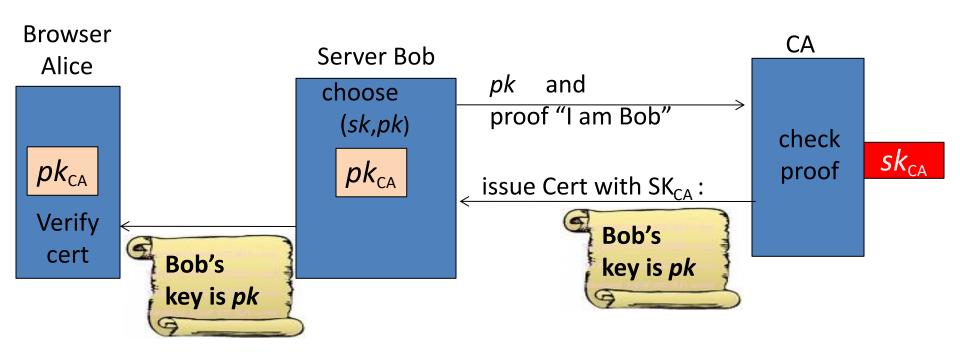
Main idea: make signature depend on contents of document

```
    Def: a signature scheme is a tuple of three algorithms:
    Gen() → (pk, sk) sign msg using sk
    Sign(sk, msg) → sig verify (msg,sig) using pk
    Verify(pk, msg, sig) → 'accept' or 'reject'
```

Dan Boneh

(2) Digital signatures

Security (informal): adversary who sees signatures on many messages of its choice, cannot forge a signature on a new message.


<u>Def</u>: a signature scheme is a tuple of three algorithms:

- Gen() \rightarrow (pk, sk) sign msg using sk
- Sign(sk, msg) \rightarrow sig verify (msg,sig) using pk
- Verify(pk, msg, sig) → 'accept' or 'reject'

Dan Boneh

(3) Certificates

How does Alice (browser) obtain pk_{Bob} ?

Bob uses Cert for an extended period (e.g. one year)

www.bankofamerica.com

Issued by: Entrust Certification Authority - L1M

Expires: Thursday, June 6, 2022 at 9:57:43 AM Pacific

Daylight Time

This certificate is valid

Sample certificate:

Organization Bank of America Corporation

Business Category Private Organization

Organizational Unit eComm Network Infrastructure

Serial Number 2927442

Common Name www.bankofamerica.com

Public Key Info

Algorithm RSA (1.2.840.113549.1.1.1)

Parameters None

Public Key 256 bytes : BE E5 23 1D 17 9A 68 05 ...

Exponent 65537

Key Size 2,048 bits

Key Usage Encrypt, Verify, Wrap, Derive

Signature 256 bytes: 39 D0 09 7E 99 C6 B3 01 ...

(by CA)

Certificates on the web

Subject's CommonName can be:

- An explicit name, e.g. cs.stanford.edu , or
- A wildcard cert, e.g. *.stanford.edu or cs*.stanford.edu

matching rules:

```
"*" must occur in leftmost component, does not match "."

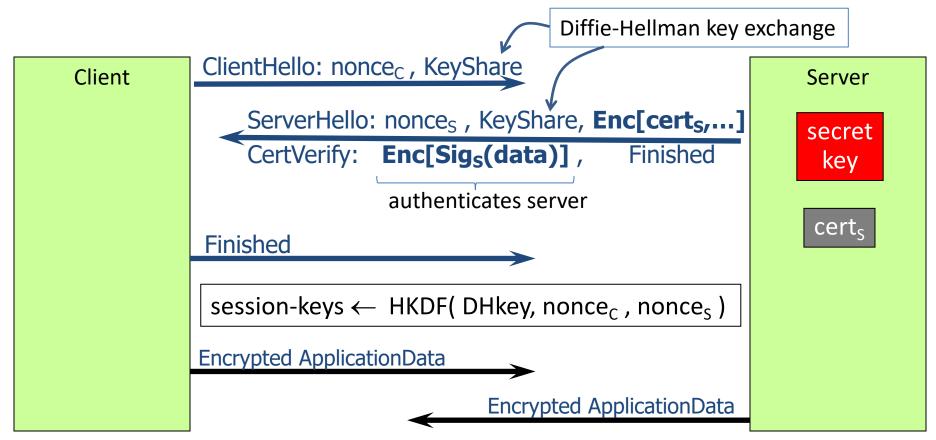
example: *.a.com matches x.a.com but not y.x.a.com
```

(as in RFC 2818: "HTTPS over TLS")

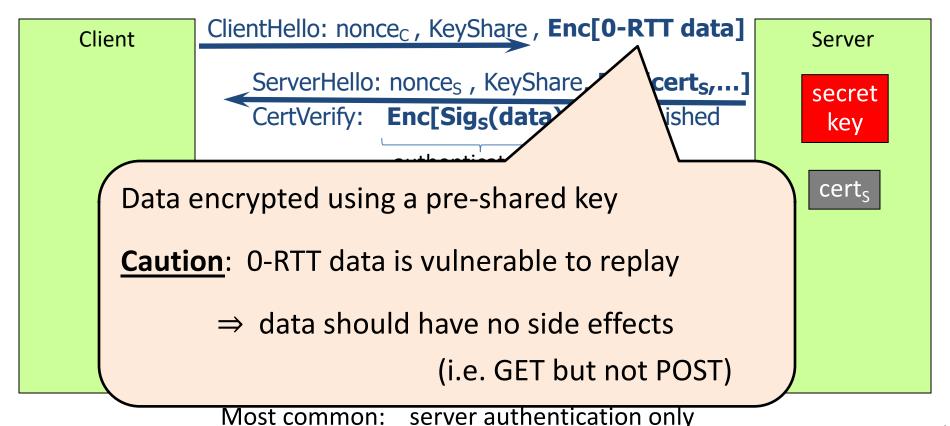
Certificate Authorities

Browsers accept certificates from a large number of CAs

Top level CAs ≈ 60


Intermediate CAs ≈ 1200

Entrust.net CAuthority (2048)	Jul 24, 2029 7:15:12 AM
Entrust.net Sification Authority	May 25, 2019 9:39:40 AM
ePKI Root Certification Authority	Dec 19, 2034 6:31:27 PM
Equifax Securtificate Authority	Aug 22, 2018 9:41:51 AM
Equifax Secure eBusiness CA-1	Jun 20, 2020 9:00:00 PM
Equifax Secure eBusiness CA-2	Jun 23, 2019 5:14:45 AM
Equifax Secul eBusiness CA-1	Jun 20, 2020 9:00:00 PM
😇 Federal Common Policy CA	Dec 1, 2030 8:45:27 AM
FNMT Clase 2 CA	Mar 18, 2019 8:26:19 AM
🚾 GeoTrust Global CA	May 20, 2022 9:00:00 PM
GeoTrust Priification Authority	Jul 16, 2036 4:59:59 PM
🔀 Global Chambersign Root	Sep 30, 2037 9:14:18 AM

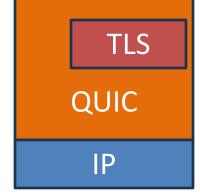


(4) TLS 1.3 session setup (simplified)

Most common: server authentication only

(3) TLS 1.3 session setup: optimization (and caution)

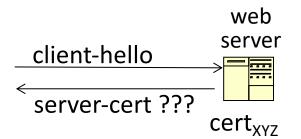
Dan Boneh


Integrating TLS with HTTP: HTTPS

HTTP/2 (2015)

HTTP
TLS
TCP
IP

TCP handshake \Rightarrow TLS handshake


HTTP/3 (2022)

integrated handshake (encrypting by default)

Integrating TLS with HTTP: HTTPS

A complication:

Virtual hosting: many sites hosted at same IP address

cert_{ABC}

```
solution since TLS 1.1: SNI (2003)
```

client_hello_extension: server_name=cnn.com

... but SNI defeats privacy benefit of encrypted cert in TLS 1.3.

Solution: enc. client hello (ECH) [encrypted with pk in server DNS]

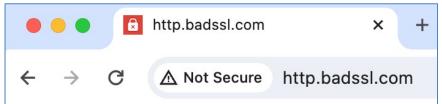
HTTPS for all web traffic?

Old excuse:

Crypto slows down web servers

⇒ no longer true (thanks to AES-NI)

Since July 2018: Chrome marks HTTP sites as insecure


HTTPS in the Browser

The TLS indicator

(HTTPS site) (HTTP site)

VS.

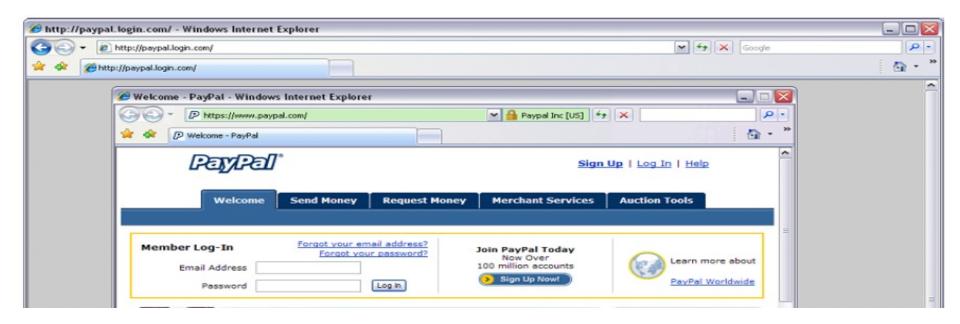
Intended goal:

- Provide user with identity of page origin
- Indicate to user that page contents were not viewed or modified by a network attacker

When is the TLS icon displayed

All elements on the page fetched using HTTPS

Extension Subject Alternative Name (2.5.29.17) Critical *.google.com *.android.com *.appengine.google.com *.cloud.google.com *.google-analytics.com *.google.ca **DNS Name** *.google.cl *.google.co.in **DNS Name** *.google.co.ip *.google.co.uk *.google.com.ar *.google.com.au **DNS Name**


For all elements:

- HTTPS cert issued by a CA trusted by browser
- HTTPS cert is valid (e.g. not expired)
- Domain in URL matches:

CommonName or **SubjectAlternativeName** in cert

Positive security indicators are dangerous

The lock icon is a **positive security indicator**. Problem: picture-in-picture attacks.

Trained users are more likely to fall victim to this [JSTB'07]

HTTPS and login pages: incorrect usage

Suppose user lands on HTTP login page.

 say, by typing HTTP URL into address bar

View source:

<form method="post"

action="https://onlineservices.wachovia.com/..."

(old site)

HTTPS and login pages: guidelines

General guideline:

Response to

http://login.site.com

should be

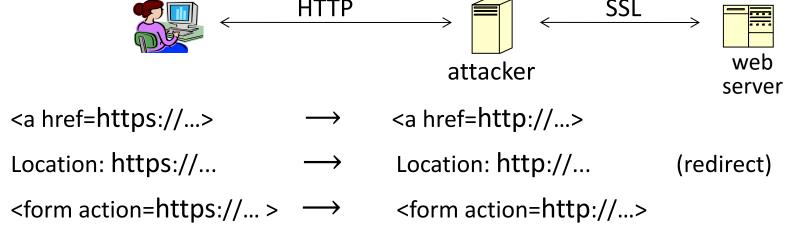
Location: https://login.site.com

(redirect)

Should be the response to every HTTP request ...

Problems with HTTPS and the Lock Icon

Problems with HTTPS and the Lock Icon

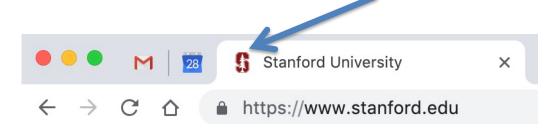

- 1. Upgrade from HTTP to HTTPS
- 2. Forged certs
- 3. Mixed content: HTTP and HTTPS on the same page
- 4. Does HTTPS hide web traffic?
 - Problems: traffic analysis, compression attacks

1. HTTP \Rightarrow HTTPS upgrade

Suppose user does:

connect to bank site over HTTP; bank redirects to HTTPS

SSL_strip attack: prevent the upgrade [Moxie'08]



Tricks and Details

UI design flaw in old browsers: location of fav icon

⇒ fav icon no longer presented in address bar

Number of users who detected HTTP downgrade: 0

Defense: Strict Transport Security (HSTS)

Strict-Transport-Security: max-age=63072000; includeSubDomains

(ignored if not over HTTPS)

Header tells browser to always connect over HTTPS

Subsequent visits must be over HTTPS (self signed certs result in an error)

- Browser refuses to connect over HTTP or if site presents an invalid cert
- Requires that <u>entire</u> site be served over <u>valid</u> HTTPS

HSTS flag deleted when user "clears private data": security vs. privacy

Preloaded HSTS list

https://hstspreload.org/

novnol com
paypal.com
Check status and eligibility

Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

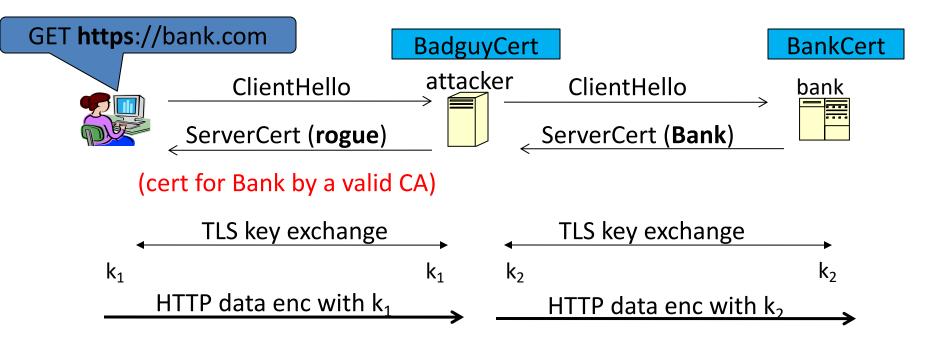
Preload list hard-coded in Chrome source code. Examples: Google, Paypal, Twitter, Simple, Linode, Stripe, Lastpass, ...

CSP: upgrade-insecure-requests

The problem: many pages use

Makes it difficult to migrate a section of a site to HTTPS

Solution: gradual transition using CSP


Content-Security-Policy: upgrade-insecure-requests

```
<img src="http://site.com/img">
<img src="http://othersite.com/img">
<img src="https://site.com/img">
<img src="https://othersite.com/img">
<img src="https://othersite.com/img">
<a href="http://site.com/img">
<a href="http://site.com/img">
<a href="http://site.com/img">
<a href="http://othersite.com/img">
<a href="http://othersite.com/img">
<a href="http://othersite.com/img">
<a href="http://othersite.com/img"></a>
<a href="http://othersite.com/img"></a>
<a href="http://othersite.com/img"></a>
```

2. Certificates: wrong issuance

- 2011: Comodo and DigiNotar CAs hacked, issue certs for Gmail, Yahoo! Mail, ...
- 2013: **TurkTrust** issued cert. for gmail.com (discovered by pinning)
- 2014: **Indian NIC** (intermediate CA trusted by the root CA **IndiaCCA**) issue certs for Google and Yahoo! domains
 - Result: (1) India CCA revoked NIC's intermediate certificate
 - (2) Chrome restricts India CCA root to only seven Indian domains
- 2016: WoSign (Chinese CA) issues cert for GitHub domain (among other issues)
 - Result: WoSign certs no longer trusted by Chrome and Firefox
- ⇒ enables eavesdropping w/o a warning on user's session

Man in the middle attack using rogue cert

Attacker proxies data between user and bank. Sees all traffic and can modify data at will.

What to do?

(many good ideas)

1. Public-key pinning (static pins)

- Hardcode list of allowed CAs for certain sites (Gmail, facebook, ...)
- Browser rejects certs issued by a CA not on list

2. Certificate Transparency (CT): [LL'12]

- idea: CA's must advertise a log of <u>all</u> certs. they issued
- Browser will only use a cert if it is published on (two) log servers
 - Server attaches to certificate a signed statement from log (SCT)
- Companies can scan logs to look for invalid issuance

CT requirements

April 30, 2018: CT required by chrome

- Required for all certificates with a path to a trusted root CA (not required for an installed root CA)
- Otherwise: HTTPS errors

Cert for crypto.stanford.edu published on five logs:

cloudflare nimbus2018 google argon2018, google_aviator

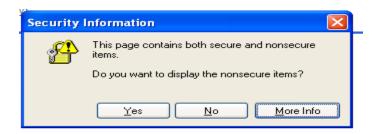
cards). NET::ERR CERTIFICATE TRANSPARENCY REQUIRED google pilot, google rocketeer

Your connection is not private

Attackers might be trying to steal your information from

choosemyreward.chase.com (for example, passwords, messages, or credit

Dan Boneh


3. Mixed Content: HTTP and HTTPS

Page loads over HTTPS, but contains content over HTTP

⇒ Active network attacker can hijack session by modifying script en-route to browser

IE7:

Old Chrome:

https://www.google.com/calendar/

https://badssl.com

(Chrome 124, 2024)

Mixed script: <script srd="http://mixed-script.badssl.com/nonsecure.js"></script>

mixed-script.badssl.com (no visible warning)

script is not loaded! developer tools show an error.

Mixed form: <form action="http://http.badssl.com/resources/submit.html">

emixed-form.badssl.com

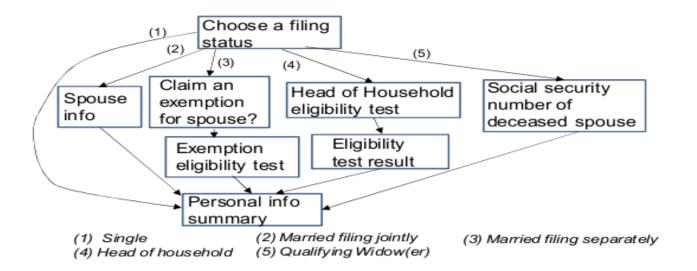
The information you're about to submit is not secure

Because this form is being submitted using a connection that's not secure, your information will be visible to others.

Warning if user tries to submit data

4. Peeking through TLS: traffic analysis

- Network traffic reveals length of HTTPS packets
 - TLS supports up to 256 bytes of padding


- Some sites interact frequently with the web server
 - These interactions expose specific internal state of the page

Chen, Wang, Wang, Zhang, 2010 (tax web site)

IOactive, 2012 (Google maps)

Peeking through TLS: an example [CWWZ'10]

Vulnerabilities in an online tax application

No easy fix. Can also be used to ID Tor traffic

THE END