CS155: Computer Security

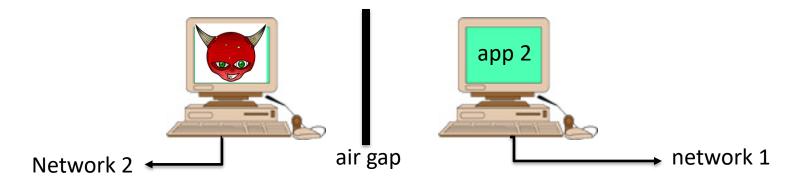
Isolation

The confinement principle

Running untrusted code

We often need to run buggy/unstrusted code:

- programs from untrusted Internet sites:
 - mobile apps, Javascript, browser extensions
 - exposed applications: browser, pdf viewer, outlook
 - legacy daemons: sendmail, bind

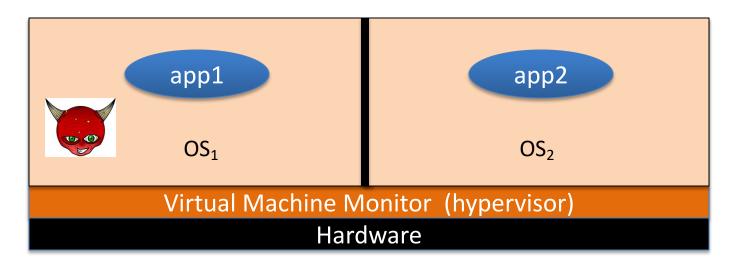

_ – honeypots

<u>Goal</u>: if application "misbehaves" \Rightarrow kill it

<u>Confinement</u>: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

- Hardware: run application on isolated hw (air gap)

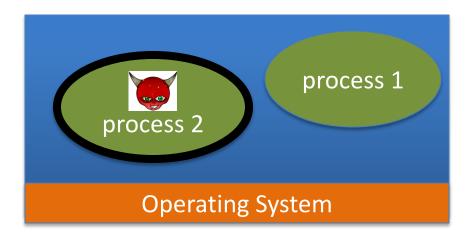


 \Rightarrow difficult to manage

<u>Confinement</u>: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

- Virtual machines: isolate OS's on a single machine



<u>Confinement</u>: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

- Process: System Call Interposition (containers)

Isolate a process in a single operating system

<u>Confinement</u>: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

- Threads: Software Fault Isolation (SFI)
 - Isolating threads sharing same address space

- Application level confinement:

e.g. browser sandbox for Javascript and WebAssembly

Implementing confinement

Key component: reference monitor

- Mediates requests from applications
 - Enforces confinement
 - Implements a specified protection policy
- Must <u>always</u> be invoked:
 - Every application request must be mediated
- Tamperproof:
 - Reference monitor cannot be killed ... or if killed, then monitored process is killed too

A old example: chroot

To use do: (must be root)

chroot /tmp/guest su guest root dir "/" is now "/tmp/guest" EUID set to "guest"

Now "/tmp/guest" is added to every file system accesses:

fopen("/etc/passwd", "r") ⇒
fopen("/tmp/guest/etc/passwd", "r")

⇒ application (e.g., web server) cannot access files outside of jail

Escaping from jails

Early escapes: relative paths

fopen("../../etc/passwd", "r") ⇒

fopen("/tmp/guest/../../etc/passwd", "r")

chroot should only be executable by root.

- otherwise jailed app can do:
 - create dummy file "/aaa/etc/passwd"
 - run chroot "/aaa"
 - run su root to become root

(bug in Ultrix 4.0)

Many ways to escape jail as root

• Create device that lets you access raw disk

• Send signals to non chrooted process

Reboot system

• Bind to privileged ports

Freebsd jail

Stronger mechanism than simple chroot

<u>To run</u>: jail jail-path hostname IP-addr cmd

- calls hardened chroot (no "../../" escape)
- can only bind to sockets with specified IP address and authorized ports
- can only communicate with processes inside jail
- root is limited, e.g. cannot load kernel modules

Problems with chroot and jail

Coarse policies:

- All or nothing access to parts of file system
- Inappropriate for apps like a web browser
 - Needs read access to files outside jail (e.g., for sending attachments in Gmail)

Does not prevent malicious apps from:

- Accessing network and messing with other machines
- Trying to crash host OS

Confinement

System Call Interposition: sanboxing a process

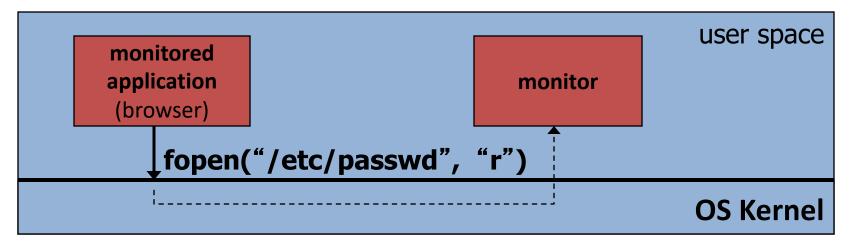
System call interposition

Observation: to damage host system (e.g. persistent changes) app must make system calls:

- To delete/overwrite files:
- To do network attacks:

unlink, open, write

socket, bind, connect, send


Idea: monitor app's system calls and block unauthorized calls

Implementation options:

- Completely kernel space (e.g., Linux seccomp)
- Completely user space (e.g., program shepherding)
- Hybrid (e.g., Systrace)

Early implementation (Janus) [GWTB'96]

Linux **ptrace**: process tracing process calls: **ptrace (..., pid_t pid, ...)** and wakes up when **pid** makes sys call.

Monitor kills application if request is disallowed

Example policy

Sample policy file (e.g., for PDF reader)

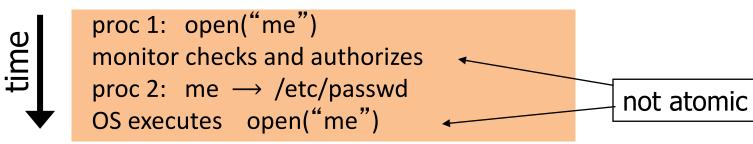
path allow /tmp/* path deny /etc/passwd network deny all

Manually specifying policy for an app can be difficult:

- Recommended default policies are available

... can be made more restrictive as needed.

Complications

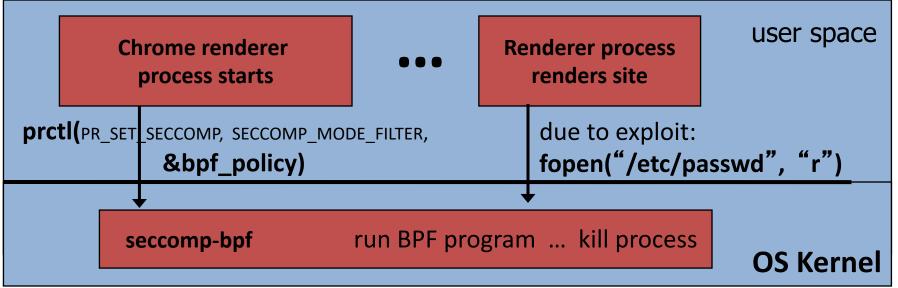

- If app forks, monitor must also fork
 - forked monitor monitors forked app
- If monitor crashes, app must be killed
- Monitor must maintain all OS state associated with app
 - current-working-dir (CWD), UID, EUID, GID
 - When app does "cd path" monitor must update its CWD
 - otherwise: relative path requests interpreted incorrectly

```
cd("/tmp")
open("passwd", "r")
cd("/etc")
open("passwd", "r")
```

Problems with ptrace

Ptrace is not well suited for this application:

- Trace all system calls or none
 - inefficient: no need to trace "close" system call
- Monitor cannot abort sys-call without killing app
- Security problems: race conditions
 - <u>Example</u>: symlink: me \rightarrow mydata.dat



Classic **TOCTOU bug**: time-of-check / time-of-use

SCI in Linux: seccomp-bpf

Seccomp-BPF: Linux kernel facility used to filter process sys calls

- Sys-call filter written in the BPF language (use BPFC compiler)
- Used in Chromium, Docker containers, ...

BPF filters (policy programs)

Process can install multiple BPF filters:

- once installed, filter cannot be removed (all run on every syscall)
- if program forks, child inherits all filters
- if program calls execve, all filters are preserved

BPF filter input: syscall number, syscall args., arch. (x86 or ARM) Filter returns one of:

- SECCOMP_RET_KILL: kill process
- SECCOMP_RET_ERRNO:
- SECCOMP_RET_ALLOW:
- return specified error to caller allow syscall

Installing a BPF filter

- Must be called before setting BPF filter.
- Ensures set-UID, set-GID ignored on subequent execve()
 - ⇒ attacker cannot elevate privilege

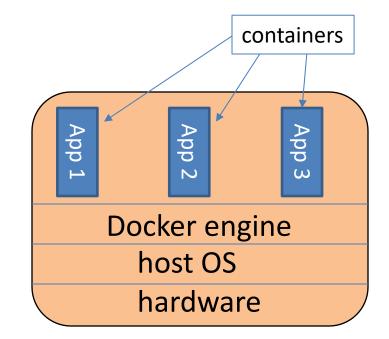
int main (int argc , char **argv) {

```
prctl(pr_set_no_new_privs , 1);
```

prctl(pr_set_seccomp, seccomp_mode_filter, &bpf_policy)

```
fopen("file.txt", "w");
```

printf("... will not be printed. n");


Kill if call open() for write

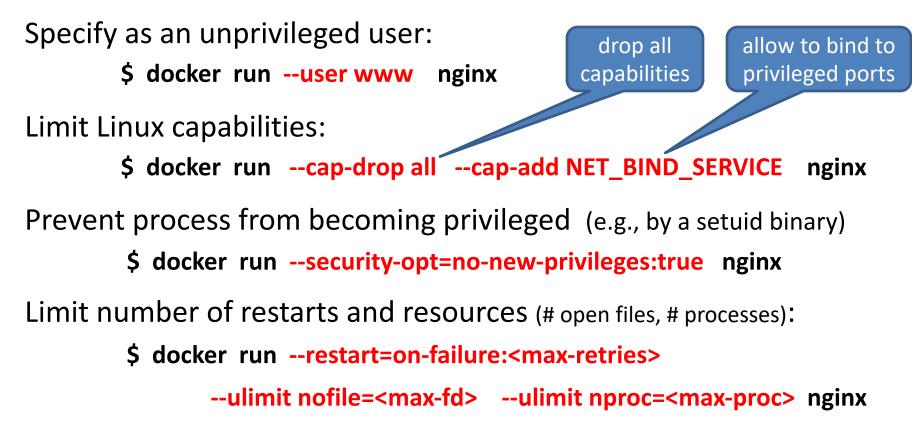
Docker: isolating containers using seccomp-bpf

Container: process level isolation

 Container prevented from making sys calls filtered by secomp-BPF

- Whoever starts container can specify BPF policy
 - default policy blocks many syscalls, including ptrace

Docker sys call filtering

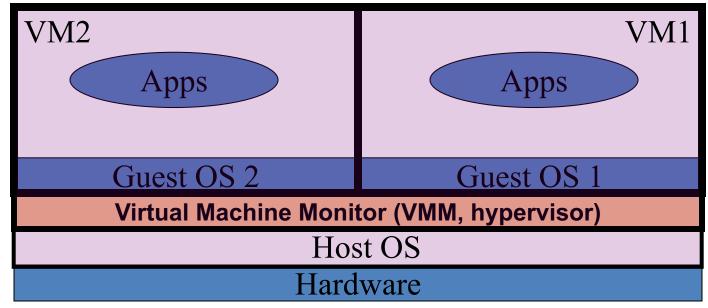

Run nginx container with a specific filter called filter.json:

\$ docker run --security-opt="seccomp=filter.json" nginx

Example filter:

```
"defaultAction": "SCMP_ACT_ERRNO", // deny by default
"syscalls": [
    { "names": ["accept"], // sys-call name
    "action": "SCMP_ACT_ALLOW", // allow (whitelist)
    "args": [] }, // what args to allow
    ...
```

More Docker confinement flags



Confinement

Via Virtual Machines

Virtual Machines

single HW platform with isolated components

Why so popular?

VMs in the 1960's:

- Few computers, lots of users
- VMs allow many users to shares a single computer

VMs 1970's – 2000: non-existent

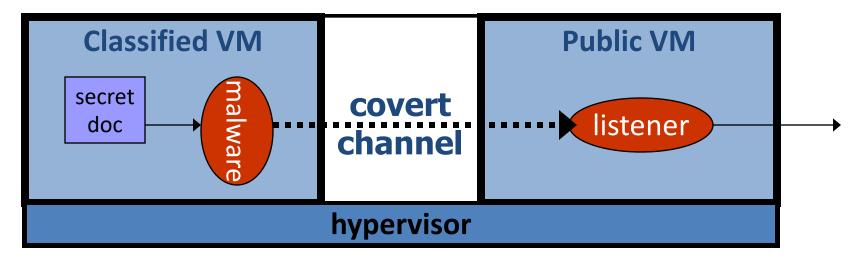
VMs since 2000:

- Too many computers, too few users
 - Print server, Mail server, Web server, File server, Database , ...
- VMs heavily used in private and public clouds

Hypervisor security assumption

Hypervisor Security assumption:

- Malware can infect <u>guest</u> OS and guest apps
- But malware cannot escape from the infected VM
 - Cannot infect <u>host</u> OS
 - Cannot infect other VMs on the same hardware


Requires that hypervisor protect itself and is not buggy

• (some) hypervisors are much simpler than a full OS

Problem: covert channels

Covert channel: unintended communication channel between isolated components

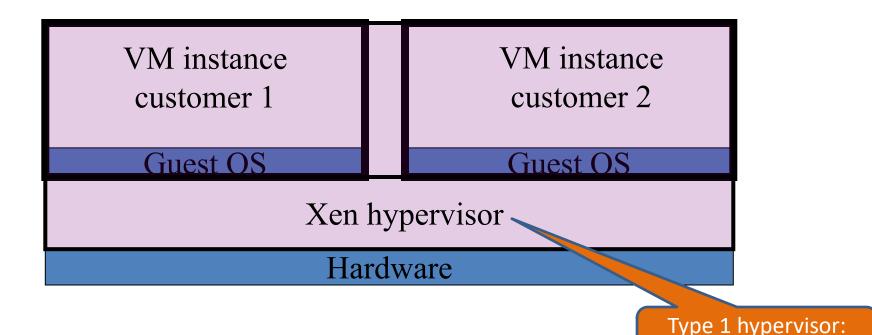
 Can leak classified data from secure component to public component

An example covert channel

Both VMs use the same underlying hardware

To send a bit $b \in \{0,1\}$ malware does:

- b= 1: at 1:00am do CPU intensive calculation
- b= 0: at 1:00am do nothing


At 1:00am listener does CPU intensive calc. and measures completion time

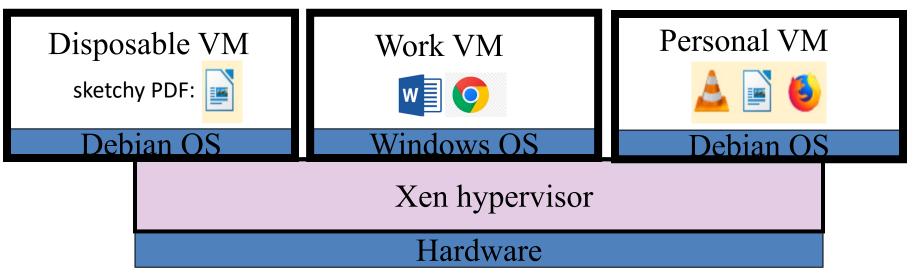
 $b = 1 \Rightarrow$ completion-time > threshold

Many covert channels exist in running system:

- File lock status, cache contents, interrupts, ...
- Difficult to eliminate all

VM isolation in practice: cloud

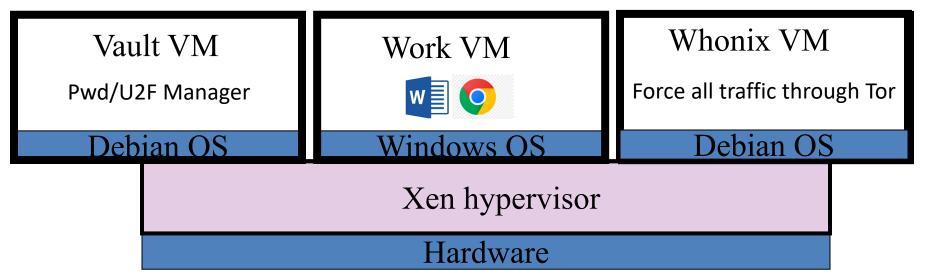
VMs from different customers may run on the same machine

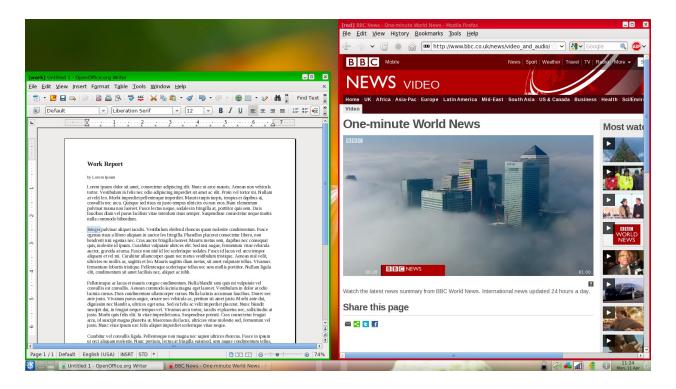

• Hypervisor must isolate VMs ... but some info leaks

no host OS

VM isolation in practice: end-user

Qubes OS: a desktop/laptop OS where everything is a VM


- Runs on top of the Xen hypervisor
- Access to peripherals (mic, camera, usb, ...) controlled by VMs


VM isolation in practice: end-user

Qubes OS: a desktop/laptop OS where everything is a VM

- Runs on top of the Xen hypervisor
- Access to peripherals (mic, camera, usb, ...) controlled by VMs

Every window frame identifies VM source

GUI VM ensures frames are drawn correctly

Hypervisor detection

Can an OS detect it is running on top of a hypervisor?

Applications:

- Malware can detect hypervisor
 - refuse to run to avoid reverse engineering
- Software that binds to hardware can refuse to run in VM
- DRM systems may refuse to run on top of hypervisor

Hypervisor detection

Hypervisor detection (red pill techniques)

- VM platforms often emulate simple hardware
 - VMWare emulates an ancient i440bx chipset
 ... but report 64GB RAM, dual CPUs, etc.
- Hypervisor introduces time latency variances
 - Memory cache behavior differs in presence of hypervisor
 - Results in relative time variations for any two operations
- Hypervisor shares the TLB with GuestOS
 - GuestOS can detect reduced TLB size
- ... and many more methods [GAWF' 07]

Hypervisor detection in the browser [HBBP'14]

Can we identify malware web sites?

 Approach: crawl web, load pages in a browser running in a VM, look for pages that damage VM

- The problem: Web page can detect it is running in a VM How? Using timing variations in writing to screen
- Malware in web page becomes benign when in a VM
 ⇒ evade detection

Hypervisor detection

Bottom line: The perfect hypervisor does not exist

Hypervisors today focus on:

Compatibility: ensure off the shelf software works *Performance*: minimize virtualization overhead

Hypervisors do not provide **transparency**

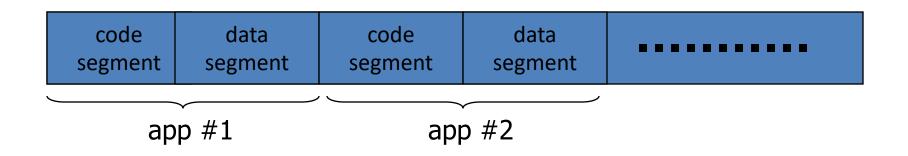
Anomalies reveal existence of hypervisor

Confinement

Software Fault Isolation: isolating threads

Software Fault Isolation [Whabe et al., 1993]

Goal: confine apps running in <u>same address space</u>


- Kernel module should not corrupt kernel
- Native libraries should not corrupt JVM

Simple solution: runs apps in separate address spaces

- Problem: slow if apps communicate frequently
 - requires context switch per message

Software Fault Isolation

SFI approach: Partition process memory into segments

- Locate unsafe instructions: jmp, load, store
 - At compile time, add guards before unsafe instructions
 - When loading code, ensure all guards are present

Segment matching technique

√12 ←

[R34]

Guard ensures code does not

load data from another segment

- Designed for M
- dr1, dr2: dedi
 - compiler pre
 - dr2 contains segmen
- Indirect load instructio

 $dr1 \leftarrow R34$

scratch-reg \leftarrow (dr1 >> 20) compare scratch-reg and dr2 trap if not equal R12 \leftarrow [dr1]

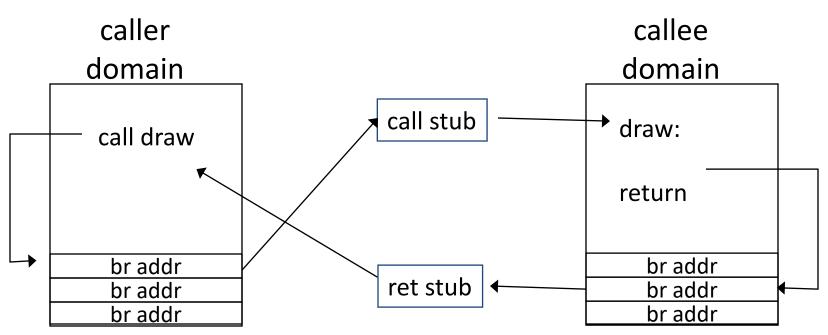
- : get segment ID
- : validate seg. ID

becomes:

Address sandboxing technique

- dr2: holds segment ID
- Indirect load instruction **R12** ← **[R34]** becomes:

dr1 ← R34 & segment-mask dr1 ← dr1 | dr2 R12 ← [dr1] : zero out seg bits


- : set valid seg ID
- : do load
- Fewer instructions than segment matching ... but does not catch offending instructions
- Similar guards placed on all unsafe instructions

Problem: what if jmp [addr] jumps directly into indirect load? (bypassing guard)

Solution:

This is why **jmp** instructions need a guard: **jmp** guard ensures **[addr]** does not bypass load guard

Cross domain calls

- Only stubs allowed to make cross-domain jumps
- Jump table contains allowed exit points
 - Addresses are hard coded, read-only segment

SFI Summary

- Performance
 - Usually good: mpeg_play, 4% slowdown
- <u>Limitations of SFI</u>: harder to implement on x86 :
 - variable length instructions: unclear where to put guards
 - few registers: can't dedicate three to SFI
 - many instructions affect memory: more guards needed

Confinement: summary

• Many sandboxing techniques:

Physical air gap, Virtual air gap (hypervisor), System call interposition (SCI), Software Fault isolation (SFI) Application specific (e.g. Javascript in browser)

- Often complete isolation is inappropriate
 - Apps need to communicate through regulated interfaces
- Hardest aspects of sandboxing:
 - Specifying policy: what can apps do and not do
 - Preventing covert channels

THE END