
Dan Boneh

CS155

Computer Security

Course overview

Dan Boneh

Admin
• Course web site: https://cs155.Stanford.edu

• Profs: Dan Boneh and Zakir Durumeric

• Three programming projects (pairs) and two written homeworks

• Project #1 posted on Wednesday. Please attend first section!

• Use EdDiscussions and Gradescope

• Automatic 72 hour extension

Dan Boneh

The computer security problem
• Lots of buggy software

• Money can be made from finding and exploiting vulns.

1. Marketplace for exploits (gaining a foothold)

2. Marketplace for malware (post compromise)

3. Strong economic and political motivation for using both
current state of computer security

Dan Bonehsource: https://www.cvedetails.com/top-50-products.php?year=2023

Top 10 products by total number of distinct vulnerabilities in 2023

Product name Vendor # vulnerabilities

Android Google 1422

Microsoft Server Microsoft 2059

Fedora Fedora Project 540

Windows 11 Microsoft 1004

Debian Linux Debian 487

MacOS Apple 418

Chrome Google 296

iPhone OS Apple 269

Dan Boneh

Distribution of exploits used in attacks

Source: Kaspersky Security Bulletin 2021

Browser

Android

Office

Java

Dan Boneh

A global problem

Source: Kaspersky Security Bulletin 2021

Top 10 countries by share of attacked users:

Dan Boneh

Goals for this course

• Understand exploit techniques
– Learn to defend and prevent common exploits

• Understand the available security tools

• Learn to architect secure systems

Dan Boneh

This course
Part 1: basics (architecting for security)

• Securing apps, OS, and legacy code:
 sandboxing, access control, and security testing

Part 2: Web security (defending against a web attacker)

• Building robust web sites, understand the browser security model

Part 3: network security (defending against a network attacker)

• Monitoring and architecting secure networks.

Part 4: securing mobile and cloud applications, hardware features

Dan Boneh

Don’t try this at home !

Dan Boneh

Introduction

What motivates
attackers?

… economics

Dan Boneh

Why compromise end user machines?
 1. Steal user credentials

keylog for banking passwords, corporate passwords, gaming pwds

Example: SilentBanker (and many like it)

Bank
Malware injects

Javascript
Bank sends login page
needed to log in

When user submits
information, also sent to
attacker

User requests login page

Similar mechanism used
by Zbot, and others

Adversary-in-the-Browser (AITB)

Dan Boneh

Lots of financial malware

Source: Kaspersky Security Bulletin 2021

• records banking passwords
via keylogger

• spread via spam email and
hacked web sites

• maintains access to PC for
future installs

Dan Boneh

Similar attacks on mobile devices
Example: FinSpy.

• Works on iOS and Android (and Windows)

• once installed: collects contacts, call history, geolocation,
 texts, messages in encrypted chat apps, …

• How installed?

– Android pre-2017: links in SMS / links in E-mail

– iOS and Android post 2017: physical access

Dan Boneh

Why own machines: 2. Ransomware

a worldwide problem

• Worm spreads via a vuln.
in SMB (port 445)

• Apr. 14, 2017: Eternalblue vuln.
released by ShadowBrokers

• May 12, 2017: Worm detected
 (3 weeks to weaponize)

Dan Boneh

W
an

na
Cr

y
 r

an
so

m
w

ar
e

Dan Boneh

Why own machines: 3. Bitcoin Mining

Source: Kaspersky Security Bulletin 2021

Examples:
1. Trojan.Win32.Miner.bbb
2. Trojan.Win32.Miner.ays
3. Trojan.JS.Miner.m
4. Trojan.Win32.Miner.gen

affected users

Dan Boneh

More devastating: server-side attacks
(1) Data theft: credit card numbers, intellectual property

– Example: Equifax (July 2017), ≈ 143M “customer” data impacted
• Exploited known vulnerability in Apache Struts (RCE)

– Many many similar attacks since 2000

(2) Political motivation:
– Election: attack on DNC (2015),
– Ukraine attacks (2014: election, 2015,2016: power grid, 2017: NotPetya, …)

(3) Infect visiting users

Dan Boneh

Result: many server-side Breaches
Typical attack steps:

– Reconnaissance

– Foothold: initial breach

– Internal reconnaissance

– Lateral movement

– Data extraction

– Exfiltration

Security tools available to
try and stop each step (kill chain)

will discuss tools during course

… but no complete solution

Dan Boneh

Case study 1: SolarWinds Orion (2020)

SolarWinds Orion: set of monitoring tools used by many orgs.

What happened?

SolarWinds

Customer 1

Customer 18000

⋮

Attack (Feb. 20, 2020): attacker corrupts SolarWinds software update process

sunburst
malware

orion

orion

Large number of infected orgs … not detected until Dec. 2020 .

Orion
software
update

one infected DLL
SolarWinds.Orion.Core.DLL

Dan Boneh

Sunspot: malware injection
How did attacker corrupt the SolarWinds build process?
• taskhostsvc.exe runs on SolarWinds build system:
– monitors for processes running MsBuild.exe (MS Visual Studio),

– if found, read cmd line args to test if Orion software being built,
– if so:
• replace file InventoryManager.cs with malware version
 (store original version in InventoryManager.bk)
• when MsBuild.exe exits, restore original file … no trace left

How can an org like SolarWinds detect/prevent this ???

Dan Boneh

The fallout …
Large number of orgs and govt systems exposed for many months

More generally: a supply chain attack

• Software, hardware, or service supplier is compromised
 ⟹ many compromised customers

• Many examples of this in the past (e.g., Target 2013, …)

• Defenses?

Dan Boneh

Case study 2: typo squatting
pip: The package installer for Python

Usage: python –m pip install ‘SomePackage>=2.3’ # specify min version

• By default, installs from PyPI:

• The Python Package Index (at pypi.org)

• PyPI hosts over 300,000 projects

Security considerations?

Dan Boneh

Security considerations: dependencies
Every package you install creates a dependence:
• Package maintainer can inject code into your environment
• Supply chain attack:
 attack on package maintainer ⟹ compromise dependent projects

https://jfrog.com/blog/malicious-pypi-packages-stealing-credit-cards-injecting-code/

Many examples:

Dan Boneh

A recent example: xz Utils
• An open source compression utility on Github

• Feb. 23, 2024: one of the two long-time maintainers introduced
 an update that includes a malicious install script

• So what? sshd has a dependency on xz Utils …
 ⇒ enables remote access into servers running sshd

• Fortunately, this was caught before wide deployment

Dan Boneh

Security considerations: typo-squatting
The risk: malware package with a similar name to a popular package
 ⟹ unsuspecting developers install the wrong package

Examples:
• urllib3: a package to parse URLs. Malware package: urlib3
• python-nmap: net scanning package. Malware package: nmap-python

From 2017-2020:
• 40 examples on PyPI of malware typo-sqautting packages

[Meyers-Tozer’2020]

Dan Boneh

Case study 3: Large Language Models
Every new technology brings new avenues for attacks
• Example: attacking LLMs via prompt injection

I’ll fine-tune a model to respond to incoming
emails using my previous email responses

mail server

incoming
email

automated
response

what could go wrong?

Dan Boneh

Prompt injection attacks
LLMs can be vulnerable to adversarial inputs
⇒ an adversarial incoming email
 can cause LLM to send back its
 training data (private emails)

An example:
 image-based prompt injection

Source: https://arxiv.org/pdf/2307.10490v4.pdf

hidden instructions

Dan Boneh

Introduction

The Marketplace for
Exploits

Dan Boneh

Marketplace for Exploits
Option 1: bug bounty programs (many)

• Google Vulnerability Reward Program: up to $31,337
 https://bughunters.google.com/
• Microsoft Bounty Program: up to $100K
• Apple Bug Bounty program: up to $200K
• Stanford bug bounty program: up to $1K

• Pwn2Own competition: $15K

Dan Boneh

Google’s bug bounty program

https://bughunters.google.com/

Dan Boneh

Marketplace for Exploits
Option 1: bug bounty programs (many)

• Google Vulnerability Reward Program: up to $31,337
• Microsoft Bounty Program: up to $100K
• Apple Bug Bounty program: up to $200K
• Stanford bug bounty program: up to $1K
• Pwn2Own competition: $15K

Option 2:
• Zerodium: up to $2M for iOS, $2.5M for Android (since 2019)

• … many others

Dan Boneh

Marketplace for Exploits

Source: Zerodium payouts

RCE: remote code execution
LPE: local privilege escalation
SBX: sandbox escape

Dan Boneh

Marketplace for Exploits

Source: Zerodium payouts

RCE: remote code execution
LPE: local privilege escalation
SBX: sandbox escape

Dan Boneh

Why buy 0days?

https://zerodium.com/faq.html

Dan Boneh

Ken Thompson’s clever Trojan

(CACM Aug. 1984)

Turing award lecture

What code can we trust?

Dan Boneh

What code can we trust?
Can we trust the “login” program in a Linux distribution? (e.g. Ubuntu)

• No! the login program may have a backdoor
 ⇾ records my password as I type it

• Solution: recompile login program from source code

Can we trust the login source code?

• No! but we can inspect the code, then recompile

Dan Boneh

Can we trust the compiler?
No! Example malicious compiler code:

compile(s) {
 if (match(s, “login-program”)) {
 compile(“login-backdoor”);
 return
 }
 /* regular compilation */
}

Dan Boneh

What to do?
Solution: inspect compiler source code,
 then recompile the compiler

Problem: C compiler is itself written in C, compiles itself

What if compiler binary has a backdoor?

Dan Boneh

Thompson’s clever backdoor
Attack step 1: change compiler source code:

compile(s) {
 if (match(s, “login-program”)) {
 compile(“login-backdoor”);
 return
 }
 if (match(s, “compiler-program”)) {
 compile(“compiler-backdoor”);
 return
 }
 /* regular compilation */
}

(*)

Dan Boneh

Thompson’s clever backdoor
Attack step 2:

• Compile modified compiler ⇒ compiler binary

• Restore compiler source to original state

Now: inspecting compiler source reveals nothing unusual

 … but compiling compiler gives a corrupt compiler binary

Complication: compiler-backdoor needs to include all of (*)

Dan Boneh

What can we trust?
I order a laptop by mail. When it arrives, what can I trust on it?

• Applications and/or operating system may be backdoored
 ⇒ solution: reinstall OS and applications

• How to reinstall? Can’t trust OS to reinstall the OS.
 ⇒ Boot Tails from a USB drive (Debian)

• Need to trust pre-boot BIOS, UEFI code. Can we trust it?
 ⇒ No! (e.g. ShadowHammer operation in 2018)

• Can we trust the motherboard? Software updates?

Dan Boneh

So, what can we trust?
Sadly, nothing … anything can be compromised
• but then we can’t make progress

Trusted Computing Base (TCB)
• Assume some minimal part of the system is not compromised
• Then build a secure environment on top of that

 will see how during the course.

Dan Boneh

THE END

Next lecture: control hijacking vulnerabilities

